Exam 1 Math 2306 sec. 51

Fall 2015

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems. The point value is listed with the problem. You may use one sheet $\left(8.5 " \times 11^{\prime \prime}\right)$ of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) (a) (10 points) Verify that the indicated family of functions is a solution of the given differential equation.

$$
\begin{gathered}
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0 ; \quad \begin{array}{l}
y=c_{1} x^{2}+c_{2} x \\
y^{\prime}=2 c_{1} x+c_{2} \\
y^{\prime \prime}=2 c_{1}
\end{array} \\
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y= \\
x^{2}\left(2 c_{1}\right)-2 x\left(2 c_{1} x+c_{2}\right)+2\left(c_{1} x^{2}+c_{2} x\right)= \\
2 c_{1} x^{2}-4 c_{1} x^{2}-2 c_{2} x+2 c_{1} x^{2}+2 c_{2} x= \\
x^{2}\left(2 c_{1}-4 c_{1}+2 c_{1}\right)+x\left(-2 c_{2}+2 c_{2}\right)=0 \\
0_{1}^{\prime \prime}
\end{gathered}
$$

(b) (10 points) Use the family of solutions given in part (a) to solve the initial value problem.

$$
y(1)=c_{1}+c_{2}=2
$$

$$
\begin{array}{lr}
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0 ; & y(1)=2, \quad y^{\prime}(1)=1 \\
=2 & y=c_{1} x^{2}+c_{2} x \\
y^{\prime}=2 c_{1} x+c_{2}
\end{array}
$$

Subtract $-C_{1}=1 \Rightarrow C_{1}=-1$

$$
c_{1}+c_{2}=2 \Rightarrow c_{2}=2-c_{1}=2+1=3
$$

$$
y=-x^{2}+3 x
$$

(2) Solve each first order equation using any applicable technique. You may give either an implicit or an explicit solution, your choice.
(a) (10 points) $x \frac{d y}{d x}-y=\frac{x^{2}}{x^{2}+1}, \quad x>0 \quad \frac{d y}{d x}-\frac{1}{x} y=\frac{x}{x^{2}+1}$

$$
\begin{gathered}
P(x)=\frac{-1}{x}, \int P(x) d x=-\int \frac{1}{x} d x=-\ln |x|=\ln x^{-1} \\
\mu=e^{\int P(x) d x}=e^{\ln x^{-1}}=x^{-1}
\end{gathered}
$$

$$
\frac{d}{d x}\left[x^{-1} y\right]=\frac{x}{x^{2}+1} \cdot x^{-1}=\frac{1}{x^{2}+1}
$$

$$
\int \frac{d}{d x}\left[x^{-1} y\right] d x=\int \frac{1}{x^{2}+1} d x
$$

$$
x^{-1} y=\tan ^{-1} x+C
$$

$$
y=x \tan ^{-1} x+C x
$$

(b) (10 points) $\frac{d y}{d t}=4 t y-y=y(4 t-1)$

$$
\begin{aligned}
& \frac{d y}{y}=(4 t-1) d t \\
& \ln |y|=2 t^{2}-t+C
\end{aligned}
$$

an explicit solution is

$$
\begin{array}{r}
y=A e^{2 t^{2}-t} \text { where } A= \pm e^{c} \\
\text { or } \\
A=0
\end{array}
$$

(3) (20 points) A 50 volt electromotic force is applied to an LR-series circuit in which the inductance is 2 henry and the resistance is 10 ohms. Find the current $i(t)$ if the initial current $i(0)=1 \mathrm{~A}$. Determine the current as $t \rightarrow \infty$.

$$
\begin{aligned}
& L \frac{d v}{d t}+R i=E \Rightarrow 2 \frac{d i}{d t}+10 i=50 \quad i(0)=1 \\
& \frac{d i}{d t}+5 i=25 \quad P(t)=5 \quad \int p(t) d t=5 t \\
& \mu=e^{5 t} \\
& \frac{d}{d t}\left[e^{5 t} \dot{u}\right]=25 e^{5 t} \\
& \int \frac{d}{d t}\left[e^{5 t} i\right] d t=\int 25 e^{5 t} d t \\
& e^{5 t} i=\frac{25}{5} e^{5 t}+C=5 e^{5 t}+C \\
& i=5+C e^{-5 t} \\
& i(0)=5+C e^{0}=1 \Rightarrow c=1-5=-Y \\
& i(t)=5-4 e^{-5 t} \\
& \text { as } \quad t \rightarrow \infty \\
& \lim _{t \rightarrow \infty} i(t)=\lim _{t \rightarrow \infty}\left(5-4 e^{-5 t}\right)=5-0=5 \\
& \text { So } \quad i \rightarrow 5 \mathrm{~A}
\end{aligned}
$$

(4) (10 points) A population experiences exponential growth so that it satisfies the IVP

$$
\frac{d P}{d t}=k P, \quad P(0)=P_{0}
$$

where $P(t)$ is the population at time t, t is in years, and P_{0} is the initial population. If the population triples every four years, determine the value of k.

$$
\begin{aligned}
& \frac{d P}{P}=k d t \Rightarrow \ln P=k t+C \Rightarrow P=e^{k t+C}=A e^{k t} \\
& P(0)=A e^{0}=P_{0} \Rightarrow A=P_{0} \\
& \text { Hence } P(t)=P_{0} e^{k t} . \quad \text { Given } P(4)=3 P_{0} \\
& 3 P_{0}=P_{0} e^{4 k} \Rightarrow 3=e^{4 k} \\
& \ln 3=4 k \Rightarrow k=\frac{1}{4} \ln 3 \\
& \text { The value of } k \text { is } \frac{1}{4} \ln 3 .
\end{aligned}
$$

(5) (10 points) Use the fact that the derivative of a constant function is zero to find all possible constant solutions, $y=c$, to the ODE.

$$
\frac{d y}{d x}+3=y^{2}+2 y
$$

Let $y=c, \frac{d y}{d x}=0$

$$
\begin{aligned}
& 0+3=y^{2}+2 y \\
& 0=y^{2}+2 y-3 \\
& 0=(y+3)(y-1)
\end{aligned}
$$

There are two courts art solutions

$$
y=-3 \quad \text { or } \quad y=1
$$

(6) (20 points) A tank contains 100 gallons of water into which 10 lbs of salt is dissolved. A solution containing 1 lb of salt per gallon is being pumped in at a rate of 2 gallons per minute, and the well mixed solution is being pumped out at the same rate. Find the amount of salt $A(t)$ in the tank at time t where t is in minutes.

The in coming

$$
\begin{aligned}
& \text { rate }=2 \mathrm{gal} / \mathrm{min} \\
& \text { concentration }=1 \frac{16}{5^{a l}}
\end{aligned}
$$

The ourgerng

$$
\begin{aligned}
\text { rate } & =2 \text { sal } / \mathrm{min} \\
\text { conc } & =\frac{\text { A } 16}{V \text { gel }}
\end{aligned}
$$

Since rate in = rate out $V=100$ gal a all times

$$
\frac{d A}{d t}=r_{i} c_{i}-r_{0} c_{0}=2 \cdot 1-2 \cdot \frac{A}{100}=2-\frac{1}{50} A
$$

The initial amount of salt is 1016 , so $A(0)=10$

$$
\left.\begin{array}{rl}
\frac{d A}{d t}+\frac{1}{50} A=2, & A(0)=10 \\
P(t)= & \frac{1}{50}, \int P(t) d t
\end{array}\right) \int \frac{1}{50} d t=\frac{t}{50} \quad \mu=e^{\frac{t}{50}}
$$

$$
A(0)=10=100+C \Rightarrow C=-90
$$

$$
A(t)=100-90 e^{-\frac{5}{50}}
$$

