Exam 1 Math 2306 sec. 52

Summer 2016

Name: (4 points) Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet $\left(8.5 " \times 11^{\prime \prime}\right)$ of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Verify that for any constants c_{1} and c_{2} that $y=c_{1} e^{-2 x}+c_{2} e^{4 x}-2$ is a solution of the differential equation

$$
\begin{array}{ll}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-8 y=16 \quad y^{\prime}=-2 c_{1} e^{-2 x}+4 c_{2} e^{4 x} \\
y^{\prime \prime} & =4 c_{1} e^{-2 x}+16 c_{2} e^{4 x}
\end{array}
$$

Substitute

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}-82 \stackrel{?}{=} 16 \\
4 c_{1} e^{-2 x}+16 c_{2} e^{4 x}-2\left(-2 c_{1} e^{-2 x}+4 c_{2} e^{4 x}\right)-8\left(c_{1} e^{-2 x}+c_{2} e^{4 x}-2\right) \stackrel{?}{=} 16 \\
4 c_{1} e^{-2 x}+16 c_{2} e^{4 x}+4 c_{1} e^{-2 x}-8 c_{2} e^{4 x}-8 c_{1} e^{-2 x}-8 c_{2} e^{4 x}+16 \stackrel{?}{=} 16 \\
c_{1} e^{-2 x}(4+4-8)+c_{2} e^{4 x}(16-8-8)+16=16 \\
0^{\prime \prime} \quad 16=16 \quad \text { on identity }
\end{gathered}
$$

Hence $y=c_{1} e^{-2 x}+c_{2} e^{4 x}-2$ solves the $O D E$
for any c_{1}, c_{2}.
(2) Use the information from problem (1) to find the solution of the initial value problem.

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-8 y=16, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Using y^{\prime} from (1).

$$
\begin{aligned}
& y(0)=c_{1} e^{0}+c_{2} e^{0}-2=c_{1}+c_{2}-2=1 \\
& y^{\prime}(0)=-2 c_{1} e^{0}+4 c_{2} e^{0}=-2 c_{1}+4 c_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
c_{1}+c_{2} & =3 \\
-2 c_{1}+4 c_{2} & =0 \quad \Rightarrow \quad c_{1}=2 c_{2} \\
& 3=c_{1}+c_{2}=2 c_{2}+c_{2}=3 c_{2} \Rightarrow \quad c_{2}=1 \quad, \quad c_{1}=2
\end{aligned}
$$

The solution to the IV is

$$
y=2 e^{-2 x}+e^{4 x}-2
$$

(3) Identify each equation as being Linear or Nonlinear. If an equation is nonlinear, identify at least one nonlinear term.
(a) $x^{2} y^{\prime \prime}+2 x y^{\prime}+4 y=e^{x} \quad$ This is linear.
(b) $x^{2} y^{\prime \prime}+2 y y^{\prime}+4 y=e^{x} \quad$ This is nonlinear. Ty' is a noulinecer term.
(c) $\cos (t) \frac{d x}{d t}+\sin (t) x=\tan (x) \quad$ This is nonlinear. $\tan x$ is c nonlineo term.
(4) Find all solutions of the separable equation. Implicit or explicit, your choice.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y^{2}+1}{x-2} \\
& \Rightarrow \frac{1}{y^{2}+1} d x=\frac{1}{d x}=\frac{1}{x-2} \\
& \int \frac{1}{y^{2}+1} d y=\int \frac{1}{x-2} d x \\
& \tan ^{-1} y=\ln |x-2|+C
\end{aligned}
$$

All solus. are given implicitly by this.
(5) Find the general solution of the first order linear equation.

$$
\begin{gathered}
\frac{d y}{d x}+2 y=6 x^{2} e^{-2 x} P(x)=2 \text { so } \mu=e^{\int P(x) d x}=e^{\int 2 d x}=e^{2 x} \\
e^{2 x}\left(\frac{d y}{d x}+2 y\right)=6 x^{2} e^{-2 x} \cdot e^{2 x} \\
\frac{d}{d x}\left[e^{2 x} y\right]=6 x^{2} \\
\int \frac{d}{d x}\left[e^{2 x} y\right] d x=\int 6 x^{2} d x \\
e^{2 x} y=2 x^{3}+C \\
y=2 x^{3} e^{-2 x}+C e^{-2 x}
\end{gathered}
$$

(6) Solve the initial value problem. (You may give an implicit or explicit solution, your choice.)

$$
\frac{d x}{d t}=\sqrt{x} \sin (t), \quad x(0)=1
$$

Separate variables

$$
\frac{1}{\sqrt{x}} \frac{d x}{d t}=\sin t
$$

$$
\int x^{-1 / 2} d x=\int \sin t d t \Rightarrow \frac{x^{1 / 2}}{1 / 2}=-\cos t+C
$$

$$
\begin{aligned}
& 2 \sqrt{x}=-\cos t+C \quad \text { Apply } \quad x(0)=1 \\
& 2 \sqrt{1}=-\cos 0+C \quad
\end{aligned} \quad \begin{gathered}
\\
2+2+1=3
\end{gathered}
$$

Implocitls, the soln. to the $V \rho \rho$ is $2 \sqrt{x}=3-\cos t$

