Exam 1 Math 2306 sec. 53

Fall 2018
Name: (4 points)
Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formab allegation of academic masconduct. Show all of your work on the paper provided to receive full credit.
(1) Determine if each ODE is linear or nonlinear. If nonlinear, explain why (for example, identify at least one term in the equation that makes it nonlinear).
(a) $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+4 y=e^{x} \quad$ Line cr
(b) $\frac{d y}{d x}=\sqrt{1-y^{2}} \quad$ wonline or y is dependent and we hame $\sqrt{1-y^{2}}$
(c) $\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+2 x \frac{d x}{d t}=0$ nondines x is dopundect so $\left(\frac{d^{2} x}{d t^{2}}\right)^{2}$ is a
(d) $\cos (t) \frac{d u}{d t}+\sin (t) u=1$
(2) Given that $y=c_{1} e^{x}+c_{2} e^{-2 x}$ is a two parameter family of solutions of $y^{\prime \prime}+y^{\prime}-2 y=0$, find the solution of the initial value problem

$$
\left.\begin{array}{r}
y^{\prime \prime}+y^{\prime}-2 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-7 \\
y=c_{1} e^{x}+c_{2} e^{-2 x} \quad y(0)=c_{1} e^{0}+c_{2} e^{0}=2 \\
y^{\prime}=c_{1} e^{x}-2 c_{2} e^{-2 x} \quad y^{\prime}(0)=c_{1} e^{0}-2 c_{2} e^{0}=-7
\end{array}\right\} \Rightarrow
$$

$$
\begin{aligned}
c_{1}+c_{2} & =2 \\
c_{1}-2 c_{2} & =-7 \\
3 c_{2} & =9 \\
c_{2} & =3 \\
c_{1} & =2-c_{2}=-1
\end{aligned}
$$

(3) Solve the initial value problem. (Your answer can be implicit or explicit, your choice.)

$$
\begin{array}{rl}
6 \frac{d y}{d x}=\frac{x e^{x}}{y^{2}}, y(0)=1 \quad \text { supanable } \\
6)^{2} \frac{d y}{d x}=x e^{x} \Rightarrow \int 6 y^{2} d y & =\int x e^{x} d x \\
2 y^{3} & =x e^{x}-e^{x}+C \\
\text { when } x=0, y=1 & 2(1)^{3}=0 e^{0-e^{0}+C} \\
2=-1+C \Rightarrow C=3
\end{array}
$$

The solution is given implicitly by

$$
2 y^{3}=x e^{x}-e^{x}+3
$$

(4) Solve the initial value problem. (Provide an explicit solution.)

$$
\begin{gathered}
\frac{d y}{d t}+2 y=e^{-2 t} \cos t \quad y(0)=-2 \quad \text { Linear } p(t)=2 \quad \mu=e^{\int P(t 1 d t}=e^{2 t} \\
\frac{d}{d t}\left(e^{2 t} y\right)=e^{2 t} \cdot e^{-2 t} \cos t=\cos t \\
\int \frac{d}{d x}\left(e^{2 t} y\right) d t=\int \cos t d t \\
e^{2 t} y=\sin t+C \quad y=e^{-2 t} \sin t+C e^{-2 t} \\
y(x)=e^{0} \sin (0)+C e^{0}=-2 \\
y=e^{-2 t} \sin t-2 e^{-2 t}
\end{gathered}
$$

(5) For each first order differential equation, identify whether it is (I) Linear, (II) Separable, or (III) Bernoulli.
(a) $\frac{d y}{d x}=y-x \quad y^{\prime}-y=-x \quad$ Linear (I)
(b) $\frac{d y}{d x}=y^{2}-x y \quad y^{\prime}+x y=y^{2} \quad$ Bernoulli u (III)
(c) $t^{3} \frac{d y}{d t}=t \cos (y) \quad y^{\prime}=\frac{1}{t^{2}} \operatorname{cor} y$

Separable (II)
(d) $\frac{d x}{d t}+\frac{2}{t^{2}} x=t \sqrt{x} \quad x^{\prime}+\frac{2}{t^{2}} x=t x^{1 / 2}$ Bernoulli (III)
(6) Find the general solution of the Bernoulli equation $\frac{d y}{d x}+y=-e^{x} y^{2}$.
bun $n=2$ so let

$$
u=y^{1-2}=b^{-1}
$$

$$
\begin{aligned}
& u^{\prime}=-y^{-2} y^{\prime} \Rightarrow y^{\prime}=-y^{2} u^{\prime} \\
& -y^{2} u^{\prime}+y=e^{x} y^{2} \\
& u^{\prime}-\frac{y}{y^{2}}=\frac{-e^{x} y^{2}}{-y^{2}} \Rightarrow u^{\prime}-y^{-\prime}=e^{x} \\
& u^{\prime}-u=e^{x} \quad P(x)=-1 \text { s. } \mu=e^{\int p(x) d x}=e^{-x} \\
& \frac{d}{d x}\left(e^{-x} u\right)=e^{-x} \cdot e^{x}=1 \\
& \int \frac{d}{d x}\left(e^{-x} u\right) d x=\int d x \Rightarrow u=x e^{x}+C e^{x}
\end{aligned}
$$

Findly, $y=u^{-1}=\frac{1}{n}$ so the solution

$$
y=\frac{1}{x e^{x}+C e^{x}}
$$

