Exam 1 Math 3260 sec. 51

Spring 2020
Name: (4 points)
Solutions
Your signature (required) confirms that you agree to practice academic honesty.
Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use a calculator with matrix capabilities. No wifi or 4G enabled device can substitute for a calculator. No use of a text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. The matrices A and B shown below are row equivalent. Use this to find the solution set of the given system of equations. Give your answer in parametric vector form.

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrr}
3 & -6 & 1 & 6 & 14 \\
-1 & 2 & 0 & -1 & -4 \\
2 & -4 & 1 & 5 & 10
\end{array}\right] B=\left[\begin{array}{rrrrr}
1 & -2 & 0 & 1 & 4 \\
0 & 0 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& 3 x_{1}-6 x_{2}+x_{3}+6 x_{4}=14 \\
&-x_{1}+2 x_{2}-x_{4}=-4 \\
& 2 x_{1}-4 x_{2}+x_{3}+5 x_{4}=10 x_{1}=4+2 x_{2}-x_{4} \\
& x_{3}=2-3 x_{4} \\
& x_{2}, x_{n}-\text { Suee }
\end{aligned}
$$

$$
\vec{x}=\left[\begin{array}{l}
4 \\
0 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
1
\end{array}\right]
$$

2. Determine all values of the variable h such that the given matrix is the augmented matrix of a consistent linear system.
(a) $\left[\begin{array}{ccc}1 & 3 & 4 \\ 3 & h & 5\end{array}\right] \quad-3 R_{1}+R_{2}-R_{2} \quad\left[\begin{array}{ccc}1 & 3 & 4 \\ 0 & h-9 & -7\end{array}\right]$ must be a pinot position

To be consistent, we require $h-9 \neq 0$, So all h except a (is. $h \neq 9$)
(b) $\left[\begin{array}{rrr}1 & 4 & h \\ 3 & 12 & 5\end{array}\right] \quad-3 R_{1}+R_{2} \rightarrow R_{2} \quad\left[\begin{array}{llc}1 & 4 & h \\ 0 & 0 & 5-3 h\end{array}\right]$ needs to be zero

To be consistent, we require $5-3 h=0$,

$$
\text { So } h=\frac{5}{3}
$$

3. Suppose the homogeneous system of equations $A \mathbf{x}=\mathbf{0}$ has two solutions \mathbf{v}_{1} and \mathbf{v}_{2}. Show that if \mathbf{w} is any vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, then \mathbf{w} is also a solution of the homogeneous system of equations $A \mathbf{x}=\mathbf{0}$.

$$
\begin{aligned}
& \begin{array}{l}
\text { Suppose } \vec{\sim} \text { is in Span }\left\{\vec{U}_{1}, \vec{V}_{2}\right\} \text {. } \\
=c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2} \text { for Some } S \text { capers } C_{1} \text { or } \\
\text { sw, } A \vec{v}_{1}=\overrightarrow{0} \text { and } A \vec{v}_{2}=\overrightarrow{0} \text {. Note that }
\end{array} \\
& A \vec{w}=A\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2} \\
& =c_{1} \vec{O}+c_{2} \vec{O}=\vec{O}
\end{aligned}
$$

That is, $A \vec{w}=\overrightarrow{0}$. Hence \vec{w} solus the homogeneous system $A \vec{x}=\overrightarrow{0}$.
4. Consider the vectors

$$
\mathbf{a}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{a}_{4}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]
$$

(a) Explain why no computations are necessary to conclude that the set $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ must be linearly dependent.

There one 4 vectors with only 3 entries each.
4 vectors in \mathbb{R}^{3} are lin. dependent
(b) Find a linear dependence relation for the set $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.

$$
\begin{gathered}
{\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \vec{a}_{4}
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \vec{a}_{4}=-\vec{a}_{1}+\vec{a}_{3}} \\
A \text { relation is } \\
\vec{a}_{1}-\vec{a}_{3}+\vec{a}_{4}=\overrightarrow{0}
\end{gathered}
$$

(c) Consider the 3×4 matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}\end{array}\right]$. Characterize the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. (Parametric, or parametric vector form, your choice.)

$$
\text { From the above }\left[\begin{array}{ll}
A & \overrightarrow{0}
\end{array}\right] \xrightarrow{\operatorname{sref}}\left[\begin{array}{ccccc}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

In vector form, $A \vec{x}=\overrightarrow{0}$ it

$$
\vec{X}=x_{u}\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

5. Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a linear transformation. Suppose

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad T(\mathbf{u})=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad \text { and } \quad T(\mathbf{v})=\left[\begin{array}{r}
5 \\
-1
\end{array}\right]
$$

(a) Evaluate each of
(i) $T(3 \mathbf{u})=3\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 9\end{array}\right]$
(ii) $T(\mathbf{u}-2 \mathbf{v})=\left[\begin{array}{l}1 \\ 3\end{array}\right]-2\left[\begin{array}{c}5 \\ -1\end{array}\right]=\left[\begin{array}{c}-9 \\ 5\end{array}\right]$
(iii) $T\left(\frac{1}{2}(\mathbf{u}+\mathbf{v})\right)=\frac{1}{2}\left(\left[\begin{array}{l}1 \\ 3\end{array}\right]+\left[\begin{array}{c}5 \\ -1\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{l}6 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(iv) $T\left(\frac{1}{2}(\mathbf{u}-\mathbf{v})\right)=\frac{1}{2}\left(\left[\begin{array}{l}1 \\ 3\end{array}\right]-\left[\begin{array}{c}5 \\ -1\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{c}-4 \\ 4\end{array}\right]=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$
(b) Use the fact that $\mathbf{e}_{1}=\frac{1}{2}(\mathbf{u}+\mathbf{v})$ and $\mathbf{e}_{2}=\frac{1}{2}(\mathbf{u}-\mathbf{v})$ to find the standard matrix for T.

$$
A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]
$$

$\cup \sin \delta(i c ̈ i)$ and $(i v)$ above

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 2
\end{array}\right]
$$

6. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$.
(a) Show that every vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ in \mathbb{R}^{2} is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$. (For every pair of numbers a and b.)

Let $\vec{b}=\left[\begin{array}{l}a \\ b\end{array}\right]$

$$
\begin{aligned}
{\left[\begin{array}{lll}
\vec{u} & v & -b
\end{array}\right]=} & {\left[\begin{array}{ccc}
1 & 2 & a \\
3 & -1 & b
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
1 & 2 & a \\
0 & -7 & b-3 a
\end{array}\right] }
\end{aligned}
$$

From this ret Columns 1 ard 2 are pivot columns.

Since the last column is not a pinot column $x_{1} \vec{u}+x_{2} \vec{v}=\vec{b}_{0}$ is always consistent.
(b) Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ have standard matrix $A=[\mathbf{u} \mathbf{v}]$. (The vectors \mathbf{u} and \mathbf{v} are the columns of A.)
(i) Is T onto? (Justify) $B y$ the above $A \vec{x}=\vec{b}$ is always consistent. Itence

$$
T \text { is onto. }
$$

(ii) Is T one to one? (Justify) Conside $A \vec{x}=\overrightarrow{0}$

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
3 & -1 & 0
\end{array}\right] \stackrel{\operatorname{rre} f}{\rightarrow}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad x_{1}=x_{2}=0
$$

Only the trivial solution exists, hence T is ore to one.

