Exam 1 Math 3260 sec. 51

Spring 2020

Name: (4 points) Salikhions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem || Points INSTRUCTIONS: There are 6 problems
worth 16 points each. You may use a cal-
1 culator with matrix capabilities. No wifi or
4G enabled device can substitute for a cal-
culator. No use of a text book, smart de-
vice, or other resource is permitted. Illicit
use of any additional resource will result
in a grade of zero on this exam as well as a
formal allegation of academic misconduct.
Show all of your work on the paper provided
to receive full credit.
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1. The matrices A and B shown below are row equivalent. Use this to find the solution set of the
given system of equations. Give your answer in parametric vector form.
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2. Determine all values of the variable A such that the given matrix is the augmented matrix of a

consistent linear system.
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3. Suppose the homogeneous system of equations Ax = 0 has two solutions v; and v,. Show
that if w is any vector in Span{vy, vo}, then w is also a solution of the homogeneous system of

equations Ax = 0.
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4. Consider the vectors

1 3 2 1
a; = 11, aa=| -2, a3=|3 and as;= | 2
—1 1 4 5

(a) Explain why no computations are necessary to conclude that the set {a;, as, a3, a4} must be
linearly dependent.
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(b) Find a linear dependence relation for the set {a;, ay, ag, a4 }.
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(c) Consider the 3 x 4 matrix A = [a; ap a3 a4]. Characterize the solution set of the homoge-
neous equation Ax = 0. (Parametric, or parametric vector form, your choice.)

) cre b ) 6] (@) -
Yf\ot\,\ M\a o \o T/\ O\X ) [o | o o :)
e e o
X, = Xy
Xz =™
X3 Z -Xy
><v\’



5. Let T : R? — R? be a linear transformation. Suppose

w=[1] v=[ 4] rw=[4] wa =] 3]

(a) Evaluate each of
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(b) Use the fact that e; = §(u +v)and ey = 5 (u — v) to find the standard matrix for 7.
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6. Letu = {3}andv—l_1}.

(a) Show that every vector { Z } in R? is in Span{u, v}. (For every pair of numbers @ and b.)
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(b) Let T : R? — R? have standard matrix A = [u v]. (The vectors u and v are the columns
of A.)

(i) Is T onto? (Justify) o M alboeoe [NT -
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