Exam 1 Math 3260 sec. 55

Spring 2020

Name: (4 points)

Your signature (required) confirms that you agree to practice academic honesty.

Signature: _____

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use a calculator with matrix capabilities. No wifi or 4G enabled device can substitute for a calculator. No use of a text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. The matrices A and B shown below are row equivalent. Use this to find the solution set of the given system of equations. Give your answer in parametric vector form.

$A = \begin{bmatrix} -2 & 2 & -3 & -2 & -8 \\ 3 & -3 & 3 & 1 & 10 \\ 2 & -2 & 2 & 0 & 4 \end{bmatrix}$	$B = \begin{bmatrix} 1 & -1 & 0 & 0 & 6 \\ 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$X_1 = 6 + X_2$ $X_3 = -9$ $X_4 = 9$ $X_2 - free$
$\vec{X} = \begin{bmatrix} 6 \\ 0 \\ -4 \\ 4 \end{bmatrix} + \chi_{1}$	

2. Determine all values of the variable h such that the given matrix is the augmented matrix of a consistent linear system.

(a)
$$\begin{bmatrix} -1 & 3 & 2 \\ 2 & h & 1 \end{bmatrix}$$
 $\exists R_1 + R_2 \Rightarrow R_2 \begin{bmatrix} -1 & 3 & 2 \\ 0 & h + b & 5 \end{bmatrix}$ $b = position - freedom a pivot - position - freedom a pivot - position - geodes a pivot - position - geodes a pivot - position - geodes - give - geodes - geodes - give - geodes - give - geodes - give - give - geodes - give - geodes - give - geodes - give - give - geodes - give - give - geodes - give - gi$

The system is consistent if
$$10-4h=0$$

So $h = \frac{10}{4} = \frac{5}{2}$

3. Suppose the homogeneous system of equations $A\mathbf{x} = \mathbf{0}$ has two solutions \mathbf{v}_1 and \mathbf{v}_2 . Show that if w is any vector in $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, then w is also a solution of the homogeneous system of equations $A\mathbf{x} = \mathbf{0}$.

Let \vec{v}_0 be in Span $[\vec{v}_1, \vec{v}_2]$. Then $\vec{w}_1 = c_1\vec{v}_1 + c_2\vec{v}_2$ for some scolars c_1, c_2 , the know that $A\vec{v}_1, \vec{z}_0$ and $A\vec{v}_2 = \vec{0}$. Note that $A\vec{w}_1 = A(c_1\vec{v}_1 + c_2\vec{v}_2) = c_1A\vec{v}_1 + c_2A\vec{v}_2$ $= c_1\vec{0} + c_2\vec{0} = \vec{0}$ That is, $A\vec{w}_1 = \vec{0}$. Hence \vec{w} solver $A\vec{x} = \vec{0}$.

•

4. Consider the vectors

$$\mathbf{a}_1 = \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix} \text{ and } \mathbf{a}_4 = \begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix}$$

(a) Explain why no computations are necessary to conclude that the set $\{a_1, a_2, a_3, a_4\}$ must be linearly dependent.

There are four vectors in TR3. We have more vectors than entries in each vector.

(b) Find a linear dependence relation for the set $\{a_1, a_2, a_3, a_4\}$.

Find a mean dependence relation for the set
$$\{a_1, a_2, a_3, a_4\}$$
.

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 & \vec{a}_4 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\vec{a}_3 = -\vec{a}_1 + \vec{a}_2$$

$$\vec{a}_3 = -\vec{a}_1 + \vec{a}_2$$

$$\vec{a}_1 - \vec{a}_2 + \vec{a}_3 = \vec{0}$$

ح

(c) Consider the 3×4 matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$. Characterize the solution set of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. (Parametric, or parametric vector form, your choice.)

Using (b) above
$$[A \ 0] \xrightarrow{met} \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

 $X_1 = X_3$
 $X_2 = -X_3$ $X_3 - free$
 $X_4 = 0$

Silutions
$$\vec{X} = X_3 \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$

5. Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation. Suppose

$$\mathbf{u} = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1\\-1 \end{bmatrix}, \quad T(\mathbf{u}) = \begin{bmatrix} 6\\2 \end{bmatrix}, \text{ and } T(\mathbf{v}) = \begin{bmatrix} 2\\-8 \end{bmatrix}$$

(a) Evaluate each of $(12)^{-1}$

(i)
$$T(3\mathbf{u}) = \Im \begin{bmatrix} b \\ z \end{bmatrix} = \begin{bmatrix} 79 \\ 6 \end{bmatrix}$$

(ii)
$$T(\mathbf{u} - 2\mathbf{v}) = \begin{bmatrix} 6 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ -8 \end{bmatrix} = \begin{bmatrix} 2 \\ 18 \end{bmatrix}$$

(iii)
$$T\left(\frac{1}{2}(\mathbf{u}+\mathbf{v})\right) = \frac{1}{2} \left(\begin{bmatrix} 6\\2 \end{bmatrix} + \begin{bmatrix} 2\\-8 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} 9\\-6 \end{bmatrix} = \begin{bmatrix} 4\\-3 \end{bmatrix}$$

(iv) $T\left(\frac{1}{2}(\mathbf{u}-\mathbf{v})\right) = \frac{1}{2} \left(\begin{bmatrix} 6\\2 \end{bmatrix} - \begin{bmatrix} 2\\-8 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} 4\\-8 \end{bmatrix} = \begin{bmatrix} 2\\-8 \end{bmatrix}$

(b) Use the fact that $\mathbf{e}_1 = \frac{1}{2}(\mathbf{u} + \mathbf{v})$ and $\mathbf{e}_2 = \frac{1}{2}(\mathbf{u} - \mathbf{v})$ to find the standard matrix for T.

$$A = \left[T(\vec{e},) T(\vec{e}_{2}) \right]$$
Using (iii) ad (iv)
$$A = \left[\begin{array}{c} 4 & 2 \\ -3 & 5 \end{array} \right]$$

6. Let $\mathbf{u} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 4\\ -2 \end{bmatrix}$. (a) Show that every vector $\begin{bmatrix} a\\ b \end{bmatrix}$ in \mathbb{R}^2 is in Span { \mathbf{u}, \mathbf{v} }. (For every pair of numbers a and b.) Let $\mathbf{b} = \begin{bmatrix} Q\\ b \end{bmatrix}$ Consider $\mathbf{x}_1 \mathbf{u} + \mathbf{x}_2 \mathbf{v} = \mathbf{b}$ $\begin{bmatrix} 1 & \mathbf{u} & \mathbf{a} \\ 2 & -2 & \mathbf{b} \end{bmatrix}$ -2 $\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_2$ $\begin{bmatrix} 1 & \mathbf{u} & \mathbf{a} \\ 0 & -10 & \mathbf{b} - 2\mathbf{a} \end{bmatrix}$ There is a pinot position of the position of t

- (b) Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ have standard matrix $A = [\mathbf{u} \ \mathbf{v}]$. (The vectors \mathbf{u} and \mathbf{v} are the columns of A.)
 - (i) Is T onto? (Justify) Yes, By the above AX=b is always consistent.

(ii) Is T one to one? (Justify) Consider $A \overrightarrow{x} = \overrightarrow{0}$ $\begin{pmatrix} 1 & 4 & 0 \\ 2 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ There is only the trivial solution, the trivial solution, the trivial solution,