Exam 2 Review Questions: Math 2335 (Ritter)

Sections Covered: 4.1, 4.2, 4.3, 4.5-4.6, 5.1, 5.2, 5.3
This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Use a linear interpolation of $f(x)=\sin x$ to approximate $\sin (0.35)$ using the points on the graph ($0.3,0.2955202$) and ($0.4,0.3894183$).
(2) Find the unique polynomial of degree ≤ 2 that passes through the points $(1,1),(2,4)$ and $(3,-1)$.
(3) Given $f(x)=e^{-x}$ and the x-values $x_{0}=0, x_{1}=0.1, x_{2}=0.2$, compute the divided differences

$$
f\left[x_{0}, x_{1}\right], \quad f\left[x_{1}, x_{2}\right], \quad \text { and } \quad f\left[x_{0}, x_{1}, x_{2}\right] .
$$

Use the result to write the quadratic interpolation of $f(x)$ through the points $(0,1),\left(0.1, e^{0.1}\right)$, $\left(0.2, e^{0.2}\right)$. Use a TI89 or similar calculator in float 7 mode.
(4) Consider using a $3^{\text {rd }}$ order interpolating polynomial $P_{3}(t)$ to approximate the function $f(t)=\tan ^{-1} t$ on the interval $-1 \leq t \leq 1$. Find the x-values $x_{0}, x_{1}, x_{2}, x_{3}$ that will minimize the error.
(5) Use the fact that $\left|f^{(4)}(t)\right| \leq 24$ for $-1 \leq t \leq 1$ to bound the error $\left|f(t)-P_{3}(t)\right|$ from problem (4).
(6) Find the piece-wise linear interpolating function for the data set $\{(1,3),(1.5,2),(2,3.5)\}$.
(7) Find the natural cubic spline that interpolates the data in problem (6).
(8) Use the trapazoid rule with two subintervals $T_{2}(f)$ and the trapazoid rule with 4 subintervals $T_{4}(f)$ to approximate

$$
\int_{0}^{2} \frac{1}{4+x^{2}} d x
$$

Find the error for each case (compute the exact value using the Fundamental Thm of Calculus).
(9) Repeat problem number (8) except using the Simpson's rules $S_{2}(f)$ and $S_{4}(f)$.
(10) Use the results from problems (8) and (9) to approximate

$$
\int_{0}^{2} \frac{1}{4+x^{2}} d x
$$

using the Richardson extrapolation methods $R_{4}(f)$ for both the trapazoid and the Simpson's rules.
(11) Use Gaussian numerical integration $I_{2}(f)$ to approximate

$$
\int_{-1}^{1} \sqrt[3]{x} e^{-x} d x
$$

