Exam 2 Review Question Solutions: Math 2335 (Ritter)

Sections Covered: 4.1, 4.2, 4.3, 4.5-4.6, 5.1, 5.2, 5.3
This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Use a linear interpolation of $f(x)=\sin x$ to approximate $\sin (0.35)$ using the points on the graph $(0.3,0.2955202)$ and $(0.4,0.3894183) \cdot \sin (0.35) \approx P_{1}(0.35)=0.34246925$
(2) Find the unique polynomial of degree ≤ 2 that passes through the points $(1,1),(2,4)$ and $(3,-1) \cdot P_{2}(x)=-4 x^{2}+15 x-10$
(3) Given $f(x)=e^{-x}$ and the x-values $x_{0}=0, x_{1}=0.1, x_{2}=0.2$, compute the divided differences

$$
f\left[x_{0}, x_{1}\right], \quad f\left[x_{1}, x_{2}\right], \quad \text { and } \quad f\left[x_{0}, x_{1}, x_{2}\right] .
$$

Use the result to write the quadratic interpolation of $f(x)$ through the points $(0,1),\left(0.1, e^{0.1}\right)$, $\left(0.2, e^{0.2}\right)$. Use a TI89 or similar calculator in float 7 mode.

$$
\begin{aligned}
& f\left[x_{0}, x_{1}\right]=10\left(e^{0.1}-1\right) \doteq 1.0517091, \quad f\left[x_{1}, x_{2}\right]=10\left(e^{0.2}-e^{0.1}\right) \doteq 1.1623184, \\
& f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}} \doteq 0.5530461 \\
& P_{2}(x)= f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
&= 1+1.0517091 x+0.5530461 x(x-0.1) \\
&= 0.553046 x^{2}+0.996404 x+1
\end{aligned}
$$

(4) Consider using a $3^{r d}$ order interpolating polynomial $P_{3}(t)$ to approximate the function $f(t)=\tan ^{-1} t$ on the interval $-1 \leq t \leq 1$. Find the x-values $x_{0}, x_{1}, x_{2}, x_{3}$ that will minimize the error. We want the Chebyshev nodes, roots of T_{4}. These are

$$
x_{j}=\cos \left(\frac{(2 j+1) \pi}{8}\right), \quad j=0, \ldots, 3
$$

$$
x_{0} \doteq 0.9238795, \quad x_{1} \doteq 0.3826834, \quad x_{2} \doteq-0.3826834, \quad x_{3} \doteq-0.9238795
$$

(5) Use the fact that $\left|f^{(4)}(t)\right| \leq 24$ for $-1 \leq t \leq 1$ to bound the error $\left|f(t)-P_{3}(t)\right|$ from problem (4).

$$
\left|f(x)-P_{3}(x)\right| \leq \frac{L}{2^{3}} \quad \text { where } \quad L=\max _{[-1,1]}\left|\frac{f^{(4)}(x)}{4!}\right|
$$

Here, $L=24 / 4!=1$ giving a bound

$$
\left|f(x)-P_{3}(x)\right| \leq \frac{1}{2^{3}}=\frac{1}{8}
$$

(6) Find the piece-wise linear interpolating function for the data set $\{(1,3),(1.5,2),(2,3.5)\}$.

$$
\ell(x)= \begin{cases}-2 x+2, & 1 \leq x \leq 1.5 \\ 3 x-2.5, & 1.5 \leq x \leq 2\end{cases}
$$

(7) Find the natural cubic spline that interpolates the data in problem (6).

$$
s(x)= \begin{cases}5 x^{3}-15 x^{2}+\frac{47}{4} x+\frac{5}{4}, & 1 \leq x \leq 1.5 \\ -5 x^{3}+30 x^{2}-\frac{223}{4} x+35, & 1.5 \leq x \leq 2\end{cases}
$$

(8) Use the trapazoid rule with two subintervals $T_{2}(f)$ and the trapazoid rule with 4 subintervals $T_{4}(f)$ to approximate

$$
\int_{0}^{2} \frac{1}{4+x^{2}} d x
$$

Find the error for each case (compute the exact value using the Fundamental Thm of Calculus).

$$
T_{2}(f)=\frac{31}{80}=0.3875, \quad T_{4}(f) \doteq 0.3914
$$

$$
E_{2}^{T}(f)=\frac{\pi}{8}-T_{2}(f) \doteq 0.00520, \quad E_{4}^{T}(f)=\frac{\pi}{8}-T_{4}(f) \doteq 0.00130
$$

(9) Repeat problem number (8) except using the Simpson's rules $S_{2}(f)$ and $S_{4}(f)$.

$$
\begin{aligned}
S_{2}(f) & =\frac{47}{120}=0.3917, \quad S_{4}(f) \doteq 0.3927 \\
E_{2}^{S}(f)=\frac{\pi}{8}-S_{2}(f) & \doteq 0.00100, \quad E_{4}^{S}(f)=\frac{\pi}{8}-S_{4}(f) \doteq-0.00000092
\end{aligned}
$$

(10) Use the results from problems (8) and (9) to approximate

$$
\int_{0}^{2} \frac{1}{4+x^{2}} d x
$$

using the Richardson extrapolation methods $R_{4}(f)$ for both the trapazoid and the Simpson's rules. For the Trapazoid rule

$$
R_{4}(f)=\frac{1}{3}\left(4 T_{4}(f)-{ }_{2}(f)\right) \doteq 0.3927
$$

For Simpson's rule

$$
R_{4}(f)=\frac{1}{15}\left(16 S_{4}(f)-S_{2}(f)\right) \doteq 0.3928
$$

(11) Use Gaussian numerical integration $I_{2}(f)$ to approximate

$$
\int_{-1}^{1} \sqrt[3]{x} e^{-x} d x
$$

Letting $f(x)=\sqrt[3]{x} e^{-x}$,

$$
I_{2}(f)=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) \doteq-1.0158
$$

