Exam 2 Math 2254H sec. 015H

Spring 2015

Name: 4 points Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam and may result in a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Evaluate the integral using any applicable method.

$$
\begin{aligned}
& \int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}} \\
&= \int \frac{\sec ^{2} \theta d \theta}{\sec ^{3} \theta} \\
&= x=\frac{1}{\sec \theta} d \theta \\
&= d x=\sec ^{2} \theta d \theta \\
&= \sqrt{1+x^{2}}=\sec \theta \\
&= \\
&= \\
&= \\
&=\frac{x i n}{\sqrt{1+x^{2}}}+C
\end{aligned}
$$

(2) For each rational function, determine the form of the partial fraction decomposition. It is NOT necessary to find any of the coefficients A, B, etc.
(a) $\frac{x}{\left(x^{2}-16\right)\left(x^{2}+16\right)}=\frac{x}{(x-4)(x+4)\left(x^{2}+16\right)}$

$$
=\frac{A}{x-4}+\frac{B}{x+4}+\frac{C x+D}{x^{2}+16}
$$

(b) $\frac{2 x+1}{x^{3}-5 x}=\frac{2 x+1}{x\left(x^{2}-5\right)}=\frac{2 x+1}{x(x-\sqrt{5})(x+\sqrt{5})}$

$$
=\frac{A}{x}+\frac{B}{x-\sqrt{5}}+\frac{C}{x+\sqrt{5}}
$$

(c) $\frac{x^{2}-2}{x^{3}\left(x^{2}+x+1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D x+E}{x^{2}+x+1}$

$$
x^{2}+x+1 \text { is irreducible }
$$

(3) Determine if the improper integral is convergent or divergent. If convergent, evaluate it.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x \\
& =\left.\left.\lim _{t \rightarrow \infty}^{t}\right|_{1} ^{t-\sqrt{x}}\right|_{1} ^{-\sqrt{x}} \\
& =\lim _{t \rightarrow \infty}\left(-2 e^{-\sqrt{t}}+2 e^{-\sqrt{1}}\right) \\
& =e^{2}
\end{aligned}
$$

convergent

$$
\begin{aligned}
\int \frac{e^{-\sqrt{x}}}{\sqrt{x}} & d x=\int 2 e^{-u} d u \\
& =-2 e^{-u}+C \\
& =-2 e^{-\sqrt{x}}+C
\end{aligned}
$$

(4) The region bounded between the curves

$$
y=0, \quad \text { and } \quad y=\frac{1}{\sqrt{1+x^{2}}}
$$

on the interval $0 \leq x<\infty$ is rotated about the x-axis to form a solid. This solid happens to have a finite volume. Find the volume of this solid.

$$
\begin{aligned}
& \underbrace{\operatorname{rr}}_{\Delta x} \quad r=y=\frac{1}{\sqrt{1+x^{2}}} \\
& \begin{array}{l}
\text { A disk of thickness } \\
\Delta x \text { has Vokme }
\end{array} \\
& V_{0}=\pi r^{2} \Delta x=\pi\left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2} \Delta x \\
& =\frac{\pi}{1+x^{2}} \Delta x
\end{aligned}
$$

$$
\begin{aligned}
\text { Summing from } x & =0 \text { to } x \rightarrow \infty \text {, the volume is } \\
V=\int_{0}^{\infty} \frac{\pi}{1+x^{2}} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{\pi}{1+x^{2}} d x \\
& =\left.\lim _{t \rightarrow \infty} \pi \tan ^{-1} x\right|_{0} ^{t} \\
& =\lim _{t \rightarrow \infty}\left(\pi \tan ^{-1} t-\pi \tan ^{-1} 0\right) \\
& \left.=\pi \frac{\pi}{2}\right)-0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

(5) Evaluate the indefinite integral.

$$
\begin{aligned}
& \int \frac{x^{3}+x^{2}+3 x+1}{x^{2}+x-2} d x \\
& \frac{x}{x ^ { 2 } + x - 2 \longdiv { x ^ { 3 } + x ^ { 2 } + 3 x + 1 }} \\
& -\frac{\left(x^{3}+x^{2}-2 x\right)}{5 x+1} \\
& \frac{5 x+1}{(x+2)(x-1)}=\frac{A}{x+2}+\frac{3}{x-1} \Longrightarrow \\
& 5 x+1=A(x-1)+B(x+2) \\
& x=-2 \quad-9=-3 A \quad \Rightarrow A=3 \\
& x=1 \quad 6=3 B \quad \Rightarrow \quad B=2
\end{aligned}
$$

$$
\int \frac{x^{3}+x^{2}+3 x+1}{x^{2}+x-2} d x=\int\left(x+\frac{3}{x+2}+\frac{2}{x-1}\right) d x
$$

$$
=\frac{x^{2}}{2}+3 \ln |x+2|+2 \ln |x-1|+C
$$

(6) (a) Deteremine if the integral is convergent or divergent. If convergent, evaluate it.

$$
\begin{aligned}
\int_{1}^{2} \frac{d x}{x-1}= & \lim _{t \rightarrow 1^{+}} \int_{t}^{2} \frac{d x}{x-1} \\
= & \left.\lim _{t \rightarrow 1^{+}} \ln |x-1|\right|_{t} ^{2} \\
= & \lim _{t \rightarrow 1^{+}}(\ln |1|-\ln |t-1|)=\infty \\
& \text { The integral is divergent. }
\end{aligned}
$$

(b) Based on your findings above, argue whether the following integral is convergent or divergent. Justify your conclusion. Note: It is not possible (or necessary) to find an antiderivative for this integrand.

$$
\begin{aligned}
& \int_{1}^{2} \frac{e^{x}}{x-1} d x \\
& \begin{array}{ll}
\text { For } 1 \leqslant x \leqslant 2 & e^{\prime} \leqslant e^{x} \leqslant e^{2} . \\
\text { Since } \quad x-1 \geqslant 0 \text { for } \quad x \geqslant 1
\end{array} \\
& \frac{e}{x-1}<\frac{e^{x}}{x-1}<\frac{e^{2}}{x-1} \\
& e \int_{1}^{2} \frac{d x}{x-1} \text { is infinite since } \frac{e^{x}}{x-1} \text { is } \\
& \operatorname{largen} \text { than } \frac{e}{x-1}, \int_{1}^{2} \frac{e^{x}}{x-1} d x \\
& \text { must also be infinite -ide. } \\
& \text { the integral diverge. }
\end{aligned}
$$

