Exam 2 Math 2254 sec. 001

Summer 2015

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 10 points each. No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam and may result in a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) The region bounded by the graph of $y=\sqrt{x}$, the x-axis, and the lines $x=1$ and $x=4$ is rotated about the x-axis. Find the volume of the resulting solid. (Use any applicable method.)

radius

$$
r=\sqrt{x}
$$

Volume of one disle

$$
\begin{aligned}
& =\pi r^{2} \Delta x \\
& =\pi(\sqrt{x})^{2} \Delta x \\
& =\pi x \Delta x
\end{aligned}
$$

The total Volume is

$$
\begin{aligned}
V=\int_{1}^{4} \pi x \partial x & =\left.\frac{\pi x^{2}}{2}\right|_{1} ^{4}=\pi \frac{4^{2}}{2}-\pi \frac{1^{2}}{2} \\
& =\pi\left(8-\frac{1}{2}\right)=\frac{15 \pi}{2}
\end{aligned}
$$

(2) Determine if each statement is True or False. Indicate your answer with T or F in the space provided.
(a) If using the shell method to find the volume of a solid revolved about the x-axis, the integration is with respect to x. \qquad
(b) If f and g are continuous on $[a, b]$ and $f(x) \geq g(x) \geq 0$ on the interval. Then the volume V of the solid of revolution obtained by revolving the region bounded between f and g and between $x=a$ and $x=b$ about the x-axis is given by

$$
\left.V=\int_{a}^{b} \pi\left[(f(x))^{2}-(g(x))^{2}\right]\right] d x
$$

\qquad
(c) The arc length s of the continuous curve $y=f(x)$ from $x=a$ to $x=b$ is given by

$$
s=\int_{a}^{b} \sqrt{1+y^{2}} d x
$$

\qquad
(3) Evaluate the indefinite integral using any applicable method.

$$
\int \ln \left(x^{2}\right) d x \quad \begin{aligned}
\text { Parts: } & & d u & =\frac{2 x}{x^{2}} \partial x=\frac{2}{x} \partial x \\
u & =\ln \left(x^{2}\right) & d v & =d x
\end{aligned}
$$

$$
\begin{aligned}
\int \ln \left(x^{2}\right) d x & =x \ln \left(x^{2}\right)-\int x \cdot \frac{2}{x} d x \\
& =x \ln \left(x^{2}\right)-\int 2 d x \\
& =x \ln \left(x^{2}\right)-2 x+C
\end{aligned}
$$

(4) A solid has as its base the region bounded between the curves $y=x^{2}$ and $y=1$. Cross sections taken perpendicular to the x-axis are squares with one side in the $x y$-plane. Find the volume of the solid. (The answer is $\frac{16}{15}$.)

$$
\begin{aligned}
& S=1-x^{2} \\
& \text { so } \\
& A(x)=s^{2}=\left(1-x^{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V= \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x \\
&= \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x=2 \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
&\left(b_{y}\right. \text { symmetry) } \\
&= 2\left[x-\frac{2}{3} x^{3}+\left.\frac{x^{5}}{5}\right|_{0} ^{1}\right. \\
&= {\left[1-\frac{2}{3}+\frac{1}{5}\right]=2\left(\frac{1}{3}+\frac{1}{5}\right)=2\left(\frac{8}{15}\right)=\frac{16}{15} }
\end{aligned}
$$

(5) Set up, but DO NOT evaluate, an integral for the arc length of the curve $y=\sin x$ from $x=0$ to $x=\frac{\pi}{2}$.

$$
\begin{aligned}
& \frac{d y}{d x}=\cos x, 1+\left(\frac{d y}{d x}\right)^{2}=1+\cos ^{2} x \\
& s=\int_{0}^{\pi / 2} \sqrt{1+\cos ^{2} x} d x
\end{aligned}
$$

(6) A 50 N force is required to stretch a spring $10 \mathrm{~cm}(0.1 \mathrm{~m})$ from its natural length.
(a) Find the spring constant k.

$$
F=k x
$$

(b) Find the work done stretching the srping 10 cm from its natural length.
a) $50 \mathrm{~N}=(0.1 \mathrm{~m}) k \Rightarrow k=\frac{50 \mathrm{~N}}{0.1 \mathrm{~m}}=500 \frac{\mathrm{~N}}{\mathrm{~m}}$
b)

$$
\begin{aligned}
W & =\int_{0}^{0.1} 500 \frac{N}{m} \times m d x m \\
& =\int_{0}^{0.1} 500 \times d x \mathrm{Nm} \\
& =\left.500 \frac{x^{2}}{2}\right|_{0} ^{0.1} \mathrm{~J} \\
& =250(0.1)^{2} \mathrm{~J} \\
& =250(0.01) \mathrm{J}=2.5 \mathrm{~J}
\end{aligned}
$$

(7) Evaluate the indefinite integral using any applicable method.

$$
\begin{array}{rlrl}
\int \sin ^{3} x d x & =\int \sin ^{2} x \sin x d x & u & =\cos x \\
& =\int\left(1-\cos ^{2} x\right) \sin x d x & d u=-\sin x d x \\
& =-\int\left(1-n^{2}\right) d u \\
& =-u+\frac{u^{3}}{3}+C \\
& =-\cos x+\frac{\cos ^{3} x}{3}+C
\end{array}
$$

(8) Evaluate the indefinite integral using any applicable method.

$$
\begin{aligned}
\int \cos ^{2} x d x & =\int\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) d x \\
& =\frac{1}{2} x+\frac{1}{2} \cdot \frac{1}{2} \sin 2 x+C \\
& =\frac{1}{2} x+\frac{1}{4} \sin 2 x+C
\end{aligned}
$$

(9) The region bounded by the curve $y=x-x^{2}$ and the x-axis is rotated about the y-axis to generate a solid. Find the volume of the solid.

The tote
volume is

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi x\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\left.\frac{x^{4}}{4}\right|_{0} ^{1}=2 \pi\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{2 \pi}{12}=\frac{\pi}{6}\right.
\end{aligned}
$$

(10) A variable force of $F(x)=2^{x} \mathrm{~N}$ is required to move an object along the x-axis from $x=1 \mathrm{~m}$ to $x=2 \mathrm{~m}$. Find the work done.

$$
\begin{aligned}
& W=\int_{1}^{2} F(x) N d x m=\int_{1}^{2} 2^{x} d x \\
&=\left.\frac{1}{\ln 2} 2^{x}\right|_{1} ^{2} N m \\
&=\frac{1}{\ln 2}\left[2^{2}-2^{1}\right] J \\
&=\frac{2}{\ln 2} J
\end{aligned}
$$

