Exam 2 Math 2306 sec. 51

Fall 2015

Name: \qquad

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet (8.5 " $\times 11$ ") of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Consider the homogeneous differential equation for which one solution is given.

$$
4 x^{2} y^{\prime \prime}+y=0 ; \quad y_{1}=x^{1 / 2} \ln x
$$

(a) Find a second linearly independent solution y_{2}.

$$
u=\int \frac{e^{-\int \rho(x) d x}}{(y,)^{2}} d x
$$

$$
\begin{aligned}
y^{\prime \prime}+\frac{1}{4 x^{2}} y & =0 \quad P(x)=0 \\
e^{-\int p \cos d x} & =e^{0}=1
\end{aligned}
$$

$$
=\int \frac{1}{\left(x^{1 / 2} \ln x\right)^{2}} d x=\int \frac{(\ln x)^{-2}}{x} d x
$$

$$
v=\ln x, \quad d v=\frac{1}{x} d x
$$

$$
=\int v^{-2} d v
$$

$$
y_{2}=y_{1} u=x^{1 / 2} \ln x \cdot \frac{-1}{\ln x}=-x^{-1 / 2}
$$

$$
y_{2}=-\sqrt{x}
$$

$$
\begin{aligned}
& \text { (the sign man } \\
& \text { be dropped) }
\end{aligned}
$$

(b) Solve the initial value problem $4 x^{2} y^{\prime \prime}+y=0, y(1)=-2, y^{\prime}(1)=0$.

$$
\begin{aligned}
& y=c_{1} x^{1 / 2} \ln x+c_{2} x^{1 / 2} \\
& y^{\prime}=\frac{1}{2} c_{1} x^{-1 / 2} \ln x+c_{1} \frac{x^{1 / 2}}{x}+\frac{1}{2} c_{2} x^{-1 / 2} \\
& y(1)=c_{1} \ln 1+c_{2} 1=-2 \Rightarrow c_{2}=-2 \\
& y^{\prime}(1)=\frac{1}{2} c_{1} \ln 1+c_{1} 1+\frac{1}{2} c_{2} 1=0 \\
& \quad c_{1}=\frac{-1}{2} c_{2}=1
\end{aligned}
$$

$$
y=x^{1 / 2} \ln x-2 x^{1 / 2}
$$

(2) Find the general solution of each differential equation.
(a) $y^{\prime \prime}-12 y^{\prime}+36 y=0$

$$
\begin{aligned}
m^{2}-12 m+36 & =0 \quad(m-6)^{2}=0 \\
m=6 & \text { repeated root }
\end{aligned}
$$

$$
\left.y_{1}=e^{6 x}, y_{2}=x e^{6 x}\right]
$$

(b) $y^{\prime \prime}+2 y^{\prime}+10 y=0$

$$
\begin{aligned}
& m^{2}+2 m+10=0 \\
& m^{2}+2 m+1+9=0 \\
& (m+1)^{2}=-9 \quad m+1= \pm 3 i \\
& m=-1 \pm 3 i
\end{aligned}
$$

$$
y_{1}=e^{-x} \cos (3 x), y_{2}=e^{-x} \sin (3 x) \quad \begin{aligned}
& m=-1 \pm 3 c \\
& \alpha=-1, \beta=3
\end{aligned}
$$

(3) For each nonhomogeneous DE , determine the form of the particular solution when using the method of undetermined coefficients. Do not solve for any coefficients A, B, etc. (You may wish to refer to results of problem (2).)
(a) $y^{\prime \prime}-12 y^{\prime}+36 y=x^{2}-4 e^{6 x}$

$$
\begin{equation*}
y_{c}=c_{1} e^{6 x}+c_{2} x e^{6 x} \tag{2a}
\end{equation*}
$$

$$
y_{p_{1}}=A x^{2}+B x+C \quad \text { (this is okay) }
$$

$y_{p_{2}}=D e^{6 x} \rightarrow$ solves the homogeneous eqn $y_{p_{2}}=D x^{2} e^{6 x}$ this is correct

$$
y_{p}=A x^{2}+B x+C+D x^{2} e^{6 x}
$$

(b) $y^{\prime \prime}+2 y^{\prime}+10 y=7 x \cos (4 x)$

$$
\begin{equation*}
y_{c}=c_{1} e^{-x} \cos (3 x)+c_{2} e^{-x} \sin (3 x) \tag{2b}
\end{equation*}
$$

$$
y_{p}=(A x+B) \cos (4 x)+(C x+D) \sin (4 x)
$$

This works as is.
(c) $y^{\prime \prime}+2 y^{\prime}+10 y=e^{-x} \cos (3 x) \quad$ Same y_{c} as above

$$
\begin{aligned}
& y_{p}=A e^{-x} \operatorname{Cos}(3 x)+B e^{-x} \sin (3 x) \rightarrow \begin{array}{c}
\text { wort work, } \\
\text { it is } y_{c}
\end{array} \\
& \begin{array}{l}
\operatorname{cor}_{\text {insect }}^{\text {it }} y_{p}=A x e^{-x} \cos \left(3 x+B x e^{-x} \sin (3 x)\right.
\end{array}
\end{aligned}
$$

(4) Find the general solution of the nonhomogeneous differential equation.

$$
y^{\prime \prime}+2 y^{\prime}-3 y=9 x
$$

Get $y_{c}: \quad m^{2}+2 m-3=0 \quad(m+3)(m-1)=0$

$$
m_{1}=-3, \quad m_{2}=1
$$

$$
y_{c}=c_{1} e^{-3 x}+c_{2} e^{x}
$$

Get y_{p} : assume $y_{p}=A x+B$

$$
\begin{gathered}
y_{p}^{\prime}=A \\
y_{p}^{\prime \prime}=0 \\
y_{p}^{\prime \prime}+2 y_{p}^{\prime}-3 y_{p}=9 x \\
0+2 A-3(A x+B)=9 x \\
-3 A x+(2 A-3 B)=9 x \\
-3 A=9 \Rightarrow A=-3 \\
2 A-3 B=0 \Rightarrow B=\frac{2}{3} A=-2 \\
y_{p}=-3 x-2
\end{gathered}
$$

(5) For each set of functions, determine whether they are linearly dependent or independent on the indicated interval. (Clearly state your conclusion with justification.)
(a) $\quad f_{1}(x)=x e^{2 x}, \quad f_{2}(x)=-e^{2 x}, \quad(-\infty, \infty)$

$$
\begin{aligned}
W\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{ll}
x e^{2 x} & -e^{2 x} \\
e^{2 x}+2 x e^{2 x} & -2 e^{2 x}
\end{array}\right| \\
& =-2 x e^{4 x}+e^{4 x}+2 x e^{4 x}=e^{4 x} \neq 0
\end{aligned}
$$

$w \neq 0$, hence they are
linearly In dependent
(b) $y_{1}=x^{3}, \quad y_{2}=x^{3}-2 x, \quad y_{3}=4 x, \quad(0, \infty)$

Note $y_{1}-y_{2}-\frac{1}{2} y_{3}=x^{3}-\left(x^{3}-2 x\right)-\frac{1}{2}(4 x)$

$$
=x^{3}-x^{3}+2 x-2 x=0
$$

for all x in $(0, \infty)$

So taking

$$
\begin{aligned}
& c_{1}=1, c_{2}=-1, c_{3}=\frac{-1}{2} \quad \text { which are not all } \\
& 3 \text { end } \\
& c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}=0 \text { for ale } x \text { in } I
\end{aligned}
$$

Hence they are linearly dependent,

