Exam 2 Math 2306 sec. 52

Summer 2016

Name: (4 points)
Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

| Problem |
| :---: | Points,\(~\left(\begin{array}{c||}\hline \hline 1

\hline 2

\hline 3

\hline 4

\hline 5

\hline 6

\hline\end{array}\right.\)

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet (8.5 " $\times 11$ ") of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) A 200 gallon aquarium is initially filled with water into which 40 lbs of salt is dissolved. Brine containing $1 \mathrm{lb} / \mathrm{gal}$ is pumped in at a rate of $4 \mathrm{gal} / \mathrm{min}$, and the well mixed solution is pumped out at the same rate. Determine the amount of salt $A(t)$ in lbs for all $t>0$ (in minutes). Show that in the long run (i.e. as $t \rightarrow \infty$), the concentration of salt in the tank matches the $1 \mathrm{lb} / \mathrm{gal}$ concentration of the brine coming in.

$$
\begin{aligned}
V(0)=200 \mathrm{gd} \quad r_{i} & =4 \frac{g d}{m^{n}}=r_{0} \quad C_{0}=\frac{A}{V}=\frac{A}{200+(4-4) t}=\frac{A}{200} \\
C_{i} & =1 \frac{1 b}{g^{2}} \\
\frac{d A}{d t} & =r_{i} C_{i}-r_{0} C_{0}=1 \frac{1 b}{\delta^{d}} \cdot 4 \frac{g a l}{m i n}-4 \frac{\delta^{2}}{\min } \cdot \frac{A}{200} \frac{1 b}{g^{a}} \\
\Rightarrow \quad \frac{d A}{d t} & =4-\frac{4}{200} A \quad A(0)=4016
\end{aligned}
$$

Solve the IVP $\frac{d A}{d t}+\frac{1}{50} A=4, A(0)=40$

$$
\mu=e^{\int \frac{1}{50} d t}=e^{\frac{1}{50} t} \frac{d}{d t}\left[e^{\frac{1}{50} t} A\right]=4 e^{\frac{1}{50} t}
$$

$$
e^{\frac{1}{50} t} A=200 e^{\frac{1}{50 t}}+C \Rightarrow A=200+C e^{\frac{-1}{50} t}
$$

$$
A(0)=40=200+C \Rightarrow C=-160
$$

so

As $t+\infty \quad e^{-\frac{1}{50} t} \rightarrow 0$ so $\quad \lim _{t \rightarrow \infty} A(t)=200$
The volume $V=200 \mathrm{gel}$ for all time.
So the concentration C

$$
C \rightarrow \frac{2001 \mathrm{~b}}{200 \mathrm{jd}}=1 \frac{1 b}{\delta d} \text { as } t \rightarrow \infty \text {. }
$$

(2) Find the general solution of the differential equation for which one solution is given.

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+\left(x^{2}+2\right) y=0, \quad y_{1}=x \cos x
$$

Stander for ~

$$
y^{\prime \prime}-\frac{2}{x} y^{\prime}+\frac{x^{2}+2}{x^{2}} y=0
$$

$$
y_{2}=y_{1} u \text { when } u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} d x
$$

Here, $P(x)=\frac{-2}{x}$ so $-\int P(x) d x=\int \frac{2}{x} d x=2 \ln |x|=\ln x^{2}$

$$
\begin{aligned}
u & =\int \frac{e^{\ln x^{2}}}{(x \cos x)^{2}} d x=\int \frac{x^{2}}{x^{2} \cos ^{2} x} d x=\int \sec ^{2} x d x \\
& =\tan x \\
y_{2} & =y, u=x \cos x \cdot \tan x=x \cos x\left(\frac{\sin x}{\cos x}\right)=x \sin x
\end{aligned}
$$

The gevend solution is then fore

$$
y=c_{1} x \cos x+c_{2} x \sin x
$$

(3) (a) Verify that the set of functions form a fundamental solution set for the given differential equation.

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0, \quad \text { for } \quad x>0 ; \quad y_{1}=x, \quad y_{2}=x \ln (x)
$$

There are two functions for this $2^{\text {nd }}$ order ODE.

$$
\begin{aligned}
& y_{1}=x \\
& y_{1}^{\prime}=1 \\
& y_{1}^{\prime \prime}=0 \\
& y_{2}=x \ln x \\
& y_{2}^{\prime}=\ln x+\frac{x}{x} \\
& y_{2}^{\prime \prime}=\frac{1}{x}
\end{aligned}
$$

$$
x^{2} y_{1}^{\prime \prime}-x y_{1}^{\prime}+y_{1}=0
$$

$$
x^{2}(0)-x(1)+x=0
$$

$-x+x=0 \quad y$, solves the ODE

$$
\begin{aligned}
& x^{2} y_{2}^{\prime \prime}-x y_{2}^{\prime}+y_{2} \stackrel{?}{=} 0 \\
& x^{2}\left(\frac{1}{x}\right)-x(\ln x+1)+x \ln x=0 \\
& x-x \ln x-x+x \ln x=0 \\
& 0=0 \quad y_{2} \text { also solves } \\
& x \text { the ODE }
\end{aligned}
$$

Compute the wrourkien

$$
\left.\begin{array}{l}
W\left(y_{1}, y_{2}\right)(x)
\end{array}=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x & x \ln x \\
1 & \ln x+1
\end{array}\right|\right] \text { wronskien } \begin{aligned}
W(\ln x+1)-x \ln x=x \quad W\left(y_{1}, y_{2} \mid(x)=x \neq 0\right.
\end{aligned}
$$

There are 2 liver $>$ independent solutions, Hence $y_{1,} y_{2}$ form a fund. Soln. set.
(b) Write the general solution of the ODE.

$$
y=c_{1} x+c_{2} x \ln x
$$

(4) Find the general solution of each linear, constant coefficient, homogeneous equation.
(a) $y^{\prime \prime}-64 y=0$

$$
\begin{aligned}
m^{2}-64 & =0 \Rightarrow m= \pm 8 \quad 2 \text { red roots } \\
y_{1} & =e^{8 x}, y_{2}=e^{-8 x} \\
y & =c_{1} e^{8 x}+c_{2} e^{-8 x}
\end{aligned}
$$

(b) $y^{\prime \prime}-2 y^{\prime}+10 y=0$

$$
y_{1}=e^{x} \cos (3 x), y_{2}=e^{x} \sin (3 x)
$$

$$
\begin{aligned}
& m^{2}-2 m+10=0 \\
& m^{2}-2 m+1+9=0 \Rightarrow(m-1)^{2}=-9 \\
& m-1= \pm 3 i \\
& m=1 \pm 3 i \\
& \alpha=1 \quad \beta=3
\end{aligned}
$$

$$
y=c_{1} e^{x} \cos (3 x)+c_{2} e^{x} \sin (3 x)
$$

(c) $y^{\prime \prime}+10 y^{\prime}+25 y=0$

$$
\begin{aligned}
& m^{2}+10 m+25=0 \Rightarrow(m+5)^{2}=0 \\
& m=-5 \quad \text { repeated } \\
&-5 x
\end{aligned}
$$

$$
y_{1}=e^{-5 x} \quad y_{2}=x e^{-5 x} \quad y=c_{1} e^{-5 x}+c_{2} x e^{-5 x}
$$

(5) Solve the initial value problem $y^{\prime \prime}-6 y^{\prime}+8 y=0, \quad y(0)=0, \quad y^{\prime}(0)=-4$.

Char. Egn $m^{2}-6 m+8=0 \Rightarrow(m-2)(m-4)=0$

$$
\begin{aligned}
& m_{1}=2, m_{2}=4 \\
& y_{1}=e^{2 x}, y_{2}=e^{4 x}
\end{aligned}
$$

Gen. Sola. $y=c_{1} e^{2 x}+c_{2} e^{4 x}$

$$
\begin{array}{r}
y^{\prime}=2 c_{1} e^{2 x}+4 c_{2} e^{4 x} \\
y(0)=c_{1} e^{0}+c_{2} e^{0}=0 \Rightarrow c_{1}+c_{2}=0 \quad\left\{\begin{array}{l}
c_{1}=-c_{2} \\
y^{\prime}(0)=2 c_{1} e^{0}+4 c_{2} e^{0}=-4 \Rightarrow 2 c_{1}+4 c_{2}=-4
\end{array}\right\} \begin{array}{l}
\\
-2 c_{2}+4 c_{2}=-4 \quad 2 c_{2}=-4 \\
c_{2}=-2 \\
c_{1}=2
\end{array}
\end{array}
$$

The solution is $y=2 e^{2 x}-2 e^{4 x}$
(6) A 250 volt battery is attached to an RC-series circuit with a resistance of 50 ohms and a capacitance of $\frac{1}{1000}$ farads. If the initial charge $q(0)=0$, determine the charge on the capacitor for all $t>0$.

$$
R \frac{d q}{d t}+\frac{1}{c} q=E \Rightarrow 50 q^{\prime}+\frac{1}{11000} q=250
$$

Stanacerd form $\quad q^{\prime}+20 q=5 \quad q(0)=0 \quad \mu=e^{\text {S2odt }}=e^{20 t}$

$$
\begin{aligned}
& \int \frac{d}{d t}\left[e^{20 t} q\right] d t=\int 5 e^{20 t} d t \\
& e^{20 t} q=\frac{5}{20} e^{20 t}+k \Rightarrow q=\frac{1}{4}+k e^{-20 t} \\
& q(0)=\frac{1}{4}+k e^{0}=0 \Rightarrow k=\frac{-1}{4}
\end{aligned}
$$

The charge is $\quad q(t)=\frac{1}{4}-\frac{1}{4} e^{-20 t}$

