Exam 2 Math 2306 sec. 53

Fall 2018
Name: (4 points) Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formab allegation of academic masconduct. Show all of your work on the paper provided to receive full credit.
(1) Use the Wronskian to determine whether each set of functions is linearly dependent or linearly independent on the interval $(0, \infty)$.
(a) $\quad f_{1}(x)=\ln x, \quad f_{2}(x)=x \ln x$

$$
\begin{gathered}
W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
\ln x & x \ln x \\
\frac{1}{x} & \ln x+1
\end{array}\right|=(\ln x)^{2}+\ln x-\ln x=(\ln x)^{2} \neq 0 \\
\text { They an independent. }
\end{gathered}
$$

(a) $\quad g_{1}(x)=e^{-x}, \quad g_{2}(x)=e^{-x+2}$

$$
w\left(s_{1}, s_{2}\right)(x)=\left|\begin{array}{cc}
e^{-x} & e^{-x+2} \\
-e^{-x} & -e^{-x+2}
\end{array}\right|=-e^{-2 x+2}+e^{-2 x+2}=0
$$

They are dependent.
(2) Consider the second order linear equation $x^{2} y^{\prime \prime}+x y^{\prime}-9 y=0$.
(a) The function $y_{1}=x^{-3}$ is a solution (you can check, but it's not necessary). Explain why $y=c_{1} x^{-3}$ is NOT the general solution.

The equation is $2^{n d}$ order. There must be 2 solutions y, and be for genend solution

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

(b) Find the general solution.

$$
\text { Reduction of order } \quad y^{\prime \prime}+\frac{1}{x} y-\frac{9}{x^{2}} y=0
$$

$$
\begin{aligned}
u=\int \frac{e^{-\int \frac{1}{x} d x}}{\left(x^{-3}\right)^{2}} d x=\int \frac{e^{-\ln x}}{x^{-6}} d x & =\int \frac{x^{-1}}{x^{-6}} d x=\int x^{5} d x \\
& =\frac{x^{6}}{6}
\end{aligned}
$$

$$
\text { s. } y_{2}=x^{-3} \cdot \frac{x^{6}}{6}=\frac{x^{3}}{6}
$$

Igroring the $\frac{1}{6}$, the ginenal solution is

$$
y=c_{1} x^{-3}+c_{2} x^{3}
$$

(3) Verify that the differential equation is exact, and find the general solution.

$$
\begin{aligned}
& \left(3 x^{2} y+e^{x}\right) d x+\left(x^{3}-\sin y\right) d y=0 \\
& M_{y}=3 x^{2} \quad N_{x}=3 x^{2} \Rightarrow M_{y}=N_{x} \quad \text { so } F_{x}=M, F_{y}=N \\
& F(x, y)=\int\left(3 x^{2} y+e^{x}\right) d x=x^{3} y+e^{x}+g(y) \\
& \frac{\partial F}{\partial y}=x^{3}+g^{\prime}(y)=x^{3}-\sin y \quad \Rightarrow \quad g^{\prime}(y)=-\sin y \\
& g^{y}(y)=\cos y
\end{aligned}
$$

s. $F(x, y)=x^{3} y+e^{x}+\cos y$.

Tho solutions are

$$
x^{3} y+e^{x}+\cos y=C
$$

(4) Verify the pair $y_{1}=e^{x}$ and $y_{2}=e^{2 x}$ are a fundamental solution set for $y^{\prime \prime}-3 y^{\prime}+2 y=0$.

$$
\begin{array}{ll}
\text { There are } 2 \text { of then } \\
y_{1}=e^{x} & y_{1}^{\prime \prime}-3 y_{1}^{\prime}+2 y_{1}=e^{x}-3 e^{x}+2 e^{x}=0 \quad y_{1} \text { solves it. } \\
y_{1}^{\prime}=e^{x} & y_{2}^{\prime \prime}-3 y_{2}^{\prime}+2 y_{2}=4 e^{2 x}-6 e^{2 x}+2 e^{2 x}=0 \quad y_{2} \text { solves it too. } \\
y_{1}^{\prime \prime}=e^{x} & w\left(y, y_{2}\right)(x)=\left|\begin{array}{ll}
e^{x} & e^{2 x} \\
y_{2}^{\prime}=2 e^{2 x} & 2 e^{2 x}
\end{array}\right|=2 e^{3 x}-e^{3 x}=e^{3 x} \neq 0 \\
y_{2}^{\prime \prime}=4 e^{2 x} & W\left(e^{2 x}\right.
\end{array}
$$

They are linearly independent.
\Rightarrow Then are a fundamental solution set.
(5) (a) Verify that $y_{p_{1}}=2$ solves the nonhomogeneous equation $y^{\prime \prime}-3 y^{\prime}+2 y=4$.

$$
\begin{aligned}
& y_{p_{1}}^{\prime}=0 \\
& y_{p^{\prime}}^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{aligned}
y_{p_{1}}^{\prime \prime}-3 y_{p_{1}}^{\prime}+2 y_{p_{1}} & =4 \\
0-30+2(2) & =4
\end{aligned}
$$

$y_{p,}$ soles the $O D E$
(b) Verify that $y_{p_{2}}=\frac{1}{2} e^{-x}$ solves the nonhomogenous equation $y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{-x}$.

$$
\begin{aligned}
y_{p_{2}}^{\prime}=-\frac{1}{2} e^{-x} & y_{p_{2}}^{\prime \prime}-3 y_{p_{2}}^{\prime}+2 y_{p_{2}}
\end{aligned}=3 e^{-x}, ~ \begin{aligned}
& 2 \\
& y_{p_{2}}^{\prime \prime}=\frac{1}{2} e^{-x} \frac{1}{2} e^{-x}+\frac{3}{2} e^{-x}+\frac{2}{2} e^{-x}
\end{aligned}=3 e^{-x}, ~ \frac{6}{2} e^{-x}=3 e^{-x} .
$$

Ye 2 does solve the ODE
(c) Use (a) and (b) together with the problem (4) from this page to write the general solution of the linear, nonhomogeneous equation

$$
\begin{gathered}
y^{\prime \prime}-3 y^{\prime}+2 y=2+3 e^{-x} \\
y_{c}=c_{1} y_{1}+c_{2} y_{2} \text { and } y_{p}=y_{p}+y_{\sigma 2}
\end{gathered}
$$

The general solution is

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+2+\frac{1}{2} e^{-x}
$$

(6) A tank originally contains 100 gallons of water into which 10 lbs of salt is dissolved. A solution containing 1 lb of salt per gallon is pumped into the tank at a rate of 2 gallons per minute, and the well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds in the tank at time t in minutes.

$$
\begin{aligned}
& \frac{d A}{d t}=r_{i} c_{i}-r_{0} c_{0} \\
& r_{i}=2 \text { gamin } \quad r_{0}=2 \text { gal /min } \\
& c_{i}=1 \mathrm{~h} / \mathrm{adl} \quad c_{0}=\frac{A}{100} \\
& \frac{d A}{d t}=2.1-2 \frac{A}{100}=2-\frac{1}{50} A \\
& A(0)=10 \\
& \frac{d A}{d t}+\frac{1}{50} A=2 \quad P(t)=\frac{1}{50} \quad \mu=e^{\int \frac{1}{50 d t}}=e^{\frac{1}{50 t}} \\
& \left(e^{\frac{1}{50} t} A\right)^{\prime}=2 e^{\frac{1}{80} t} \\
& e^{\frac{1}{30} t} A=\int 2 e^{\frac{1}{50} t} d t=100 e^{\frac{1}{50} t}+C \\
& A=100+C e^{-\frac{1}{50} t} \\
& A(0)=10=100+C \Rightarrow C=-90 \\
& A(t)=100-90 e^{-\frac{1}{50} t}
\end{aligned}
$$

