Exam 2 Math 2306 sec. 53

Fall 2018
Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.
Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Let a be a constant, and consider the pair of functions $y_{1}=a x^{2}$ and $y_{2}=x^{2}+1$ defined in the interval $(0, \infty)$.
(a) Find the Wronskian of y_{1} and y_{2}.

$$
\begin{aligned}
W(y, y,)(x)=\left|\begin{array}{ll}
a x^{2} & x^{2}+1 \\
2 a x & 2 x
\end{array}\right| & =2 a x^{3}-\left(2 a x^{3}+2 a x\right) \\
& =-2 a x
\end{aligned}
$$

$$
W\left(y_{1}, y_{2}\right)(x)=-2 a x
$$

(b) For what values of a is the pair of functions linearly independent? (Justify)

$$
\begin{aligned}
& \text { The are independent provided } \omega \neq 0 \\
& \text { This holds for all } a \neq 0 \text {. }
\end{aligned}
$$

2. Find the general solution of the second order, linear differential equation. One solution is provided. Assume $x>0$.

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0, \quad y_{1}=x^{-1} \quad \text { Standard fou } \sim \\
& y^{\prime \prime}+\frac{3}{x} y^{\prime}+\frac{1}{x^{2}} y=0 \\
& y_{2}=4 y . \\
& P(x)=\frac{3}{x}
\end{aligned}
$$

where $u=\int \frac{e^{-\int \rho(x)} d x}{(y, 1)^{2}} d x$

$$
e^{-\int p(x) d x}=e^{-\int \frac{3}{x} d x}=e^{-3 \ln x}=x^{-3}
$$

$$
\begin{aligned}
u=\int \frac{x^{-3}}{\left(x^{-1}\right)^{2}} d x & =\int \frac{x^{2}}{x^{3}} d x=\int \frac{1}{x} d x=\ln x \\
y_{2} & =x^{-1} \ln x
\end{aligned}
$$

The severe solution is

$$
y=c_{1} x^{-1}+c_{2} x^{-1} \ln x
$$

3. A tank initially contains 100 liters of water into which 5 kg of salt is dissolved. Fresh water is pumped into the tank at a rate of $1 \mathrm{~L} / \mathrm{min}$. The well mixed solution is pumped out at the faster rate of $2 \mathrm{~L} / \mathrm{min}$. Determine the amount of salt $A(t)$ in kg in the tank at time t in minutes.

$$
\begin{array}{ll}
V(0)=100 L & A(0)=5 \mathrm{~kg} \\
r_{i}=1 \mathrm{~L} / \min & r_{0}=2 \frac{L}{\min } \\
& \text { so } \\
& V(t)=100+(1-2) t=100-t
\end{array}
$$

$c_{i}=0$ fresh water

$$
\begin{aligned}
& C_{0}=\frac{A}{v}=\frac{A}{100-t} \\
& \frac{d A}{d t}+r_{0} C_{0}=r_{i} C_{i} \quad \frac{d A}{d t}+\frac{2 A}{100-t}=0 \\
& \text { separating } \quad \frac{d A}{d t}=\frac{-2}{100-t} A \\
& \int \frac{1}{A} d A=-\int \frac{2}{100-t} d t \\
& \ln A=2 \ln |100-t|+C=\ln (100-t)^{2}+C \\
& A=e^{\ln (100-t)^{2}+C}=k(100-t)^{2} \\
& A(0)=S=k(100)^{2} \Rightarrow k=\frac{5}{100^{2}}=\frac{5}{10,000}
\end{aligned}
$$

The amount of salt

$$
A(t)=\frac{5}{10000}(100-t)^{2} \quad \text { for } 0<t<100
$$

4. Consider the nonhomogeneous, linear differential equation

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=18 x^{2}+4 x, \quad \text { for } \quad 0<x<\infty
$$

(a) Verify that $y_{p_{1}}=2 x^{3}$ is a solution of $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=18 x^{2}$.

$$
\begin{aligned}
& y_{p_{1}}^{\prime}=6 x^{2} \\
& y_{p_{1}}^{\prime \prime}=12 x
\end{aligned}
$$

$$
\begin{aligned}
x(12 x)+\left(6 x^{2}\right) & \stackrel{?}{=} 18 x^{2} \\
18 x^{2} & =18 x^{2}
\end{aligned}
$$

y_{p} is a
true
(b) Verify that $y_{p_{2}}=x^{2}$ is a solution of $\quad x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=4 x$.

$$
\begin{aligned}
& y_{p_{2}}^{\prime}=2 x \\
& y_{p_{2}}^{\prime \prime}=2
\end{aligned}
$$

$$
x(2)+(2 x) \stackrel{?}{=} 4 x \quad y p_{2} \text { ir } a
$$

$$
4 x=4 x
$$

Solution
(c) Given that the general solution of $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$ is $y=c_{1}+c_{2} \ln x$, find the solution of the initial value problem

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=18 x^{2}+4 x, \quad y(1)=1, \quad y^{\prime}(1)=0 \\
& y=y_{c}+y_{p} \text { and } y_{p}=y_{p}+y_{p} \\
& y=c_{1}+c_{2} \ln x+2 x^{3}+x^{2} \quad y(1)=c_{1}+c_{2} l_{n} 1+2 \cdot 1^{3}+1^{2}=1 \\
& y_{1}^{\prime}=\frac{c_{1}}{x}+6 x^{2}+2 x=1 \\
& c_{1}=-2 \\
& y^{\prime}(1)=\frac{c_{2}}{1}+6(1)^{2}+2 \cdot 1=0 \\
& c_{2}+8=0 \\
& c_{2}=-8
\end{aligned}
$$

The solution to the IVP is

$$
y=-2-8 \ln x+2 x^{3}+x^{2}
$$

5. Solve the initial value problem

$$
\begin{gathered}
y d x+\left(2 x-\frac{\sin y}{y}\right) d y=0 \quad y(1)=1 \\
\frac{\partial m}{\partial y}=1 \quad \frac{\partial N}{\partial x}=2 \quad \text { not exact } \\
\frac{\partial m}{\partial y}-\frac{\partial v}{\partial x}=\frac{-1}{2 x-\frac{\sin y}{y} \quad \text { ot } \quad f \times \text { alone }} \\
\frac{\partial w}{\frac{\partial x}{\partial x}-\frac{\partial m}{\partial y}}=\frac{1}{b} \int e^{\int \frac{1}{y} d y}=e^{\ln y}=y \\
y^{2} d x+(2 \times y-\sin y) d y=0
\end{gathered}
$$

Solutions $F(x, y)=c \quad F(x, y)=\int y^{2} d x=\int(2 x y-\sin y) d y$

$$
\begin{aligned}
F(x, y)=x y^{2}+g(y) \quad \frac{\partial F}{\partial y}=2 x y+g^{\prime}(y) & =2 x y-\sin y \\
\delta^{\prime}(y) & =-\sin y \\
g(y) & =\cos y
\end{aligned}
$$

so $F(x, y)=x y^{2}+$ Cory

$$
\begin{aligned}
& x^{2} y+\cos y=c \quad y(1)=1 \\
& 1^{2} \cdot 1+\cos 1=c \quad \Rightarrow \quad c=1+\cos 1
\end{aligned}
$$

The solution to the $1 V P$ is

$$
x y^{2}+\cos y=1+\cos 1
$$

