Exam 2 Math 2306 sec. 54

Fall 2018
Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.
Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Let a be a constant, and consider the pair of functions $y_{1}=\frac{a}{x}$ and $y_{2}=1+\frac{1}{x}$ defined in the interval $(0, \infty)$.
(a) Find the Wronskian of y_{1} and y_{2}.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
\frac{a}{x} & 1+\frac{1}{x} \\
\frac{-a}{x^{2}} & \frac{-1}{x^{2}}
\end{array}\right|= & \frac{-a}{x^{3}}-\left(\frac{-a}{x^{2}}-\frac{a}{x^{3}}\right) \\
& =\frac{a}{x^{2}}
\end{aligned}
$$

$$
W\left(y_{1}, y_{2}\right)(x)=\frac{a}{x^{2}}
$$

(b) For what values of a is the pair of functions linearly independent? (Justify)

$$
\begin{aligned}
& \text { Theyre linearls independent if } w \neq 0 \text {. } \\
& \text { This is tree for all } a \neq 0 \text {. }
\end{aligned}
$$

2. Find the general solution of the second order, linear differential equation. One solution is provided. Assume $x>0$.

$$
x^{2} y^{\prime \prime}+5 y^{\prime}+4 y=0, \quad y_{1}=x^{-2} \quad \text { Stonderd form }
$$

This ODE contains a typo. $y^{\prime \prime}+\frac{5}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \quad P(x)=\frac{5}{x}$

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

$$
y_{2}=4 y \text {, where } u=\int \frac{e^{-\int p(x) d x}}{(51)^{2}} d x
$$ I have accounted for this error in the grading.

$$
\begin{gathered}
e^{-\int \rho(x) d x}=e^{-\int \frac{5}{x} d x}=e^{-\operatorname{sen} x}=x^{-5},\left(y_{1}\right)^{2}=\left(x^{-2)^{2}}=x^{-4}\right. \\
u=\int \frac{x^{-5}}{x^{-4}} d x=\int \frac{x^{4}}{x^{5}} d x=\int \frac{1}{x} d x=\ln x \\
y_{2}=x^{-2} \ln x
\end{gathered}
$$

The genera solution is

$$
y=c_{1} x^{-2}+c_{2} x^{-2} \ln x
$$

3. A large run off tank originally contains 600 gallons of water with 50 ounces of pollution dissolved in it. Polluted water flows into the tank at a rate of $3 \mathrm{gal} / \mathrm{hr}$ and contains 5 ounces of pollution per gallon. The solution is kept well mixed, and is drained from the tank at the same rate of $3 \mathrm{gal} / \mathrm{hr}$. Determine the amount of pollution $A(t)$, in ounces, in the tank at the time t in hours.

$$
\begin{aligned}
& V(0)=600 \text { sal } \quad A(0)=50 \text { oz } \\
& r_{i}=3 \frac{\text { gal }}{h r} \quad r_{0}=3 \frac{\mathrm{sel}}{\mathrm{~h}} \\
& c_{i}=5 \frac{0 z}{\delta a} \text { Note } V(t)=600 \text { for all } t \text { since } r_{i}=r_{0} \\
& c_{0}=\frac{A}{V}=\frac{A}{600} \\
& \frac{d A}{d t}+r_{0} C_{0}=r_{i} C_{i} \quad \quad \frac{d A}{d t}+\frac{3}{600} A=15 \\
& P(t)=\frac{1}{200} \quad \mu=e^{\int \frac{1}{200} \cdot d t}=e^{\frac{1}{200} d t} \\
& \frac{d}{d t}\left(e^{\frac{1}{200} t} A\right)=15 e^{\frac{1}{200} t} \Rightarrow e^{\frac{1}{200} t} A=15(200) e^{\frac{1}{200} t}+C \\
& A=3000+C e^{\frac{-1}{200} t} \\
& A(0)=50=3000+C \quad C=-2950 \\
& \text { The amount of pollution is } \\
& A=3000-2950 e^{\frac{-1}{200} t}
\end{aligned}
$$

4. Consider the nonhomogeneous, linear differential equation

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=2+9 x^{2}, \quad \text { for } \quad 0<x<\infty
$$

(a) Verify that $y_{p_{1}}=2 x$ is a solution of $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=2$.

$$
\begin{array}{lc}
y_{p_{1}}^{\prime}=2 & x(0)+(2)!2 \\
y_{p_{1}}^{\prime \prime}=0 & 2=2 \\
& \text { trave }^{\prime}
\end{array}
$$

(b) Verify that $y_{p_{2}}=x^{3}$ is a solution of $\quad x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=9 x^{2}$.

$$
\begin{aligned}
y p_{2} & =3 x^{2} \\
y_{p_{2}}^{\prime \prime} & =6 x
\end{aligned} \quad x(6 x)+\left(3 x^{2}\right)=9 x^{2} \quad y_{p_{2}} \text { is a solution }
$$

trug
(c) Given that the general solution of $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$ is $y=c_{1}+c_{2} \ln x$, find the solution of the initial value problem

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=2+9 x^{2}, y(1)=1, \quad y^{\prime}(1)=0 \\
& y=y_{c}+y_{p} \quad y_{p}=b_{p}+y_{p_{2}} \text { so that } y=c_{1}+c_{2} \ln x+2 x+x^{3} \\
& y^{\prime}=\frac{c_{2}}{x}+2+3 x^{2} \quad y(1)=c_{1}+c_{2} \ln 1+2 \cdot 1+1^{3}=1 \\
& c_{1}+3=1 \quad c_{1}=-2 \\
& y^{\prime}(1)=\frac{c_{2}}{1}+2+3 \cdot 1^{2}=0 \quad c_{2}+5=0 \\
& c_{2}=-5
\end{aligned}
$$

The solution to the IVP is

$$
y=-2-\operatorname{sen} x+2 x+x^{3}
$$

5. Solve the initial value problem

$$
\begin{aligned}
& y d x+\left(2 x-e^{y^{2}}\right) d y=0 \quad y(1)=1 \\
& \frac{\partial M}{\partial \zeta}=1 \quad \frac{\partial N}{\partial x}=2 \text { not exact } \\
& \frac{\frac{\partial M}{\partial \partial}-\frac{\partial u}{\partial x}}{N}=\frac{-1}{2 x-e^{y^{2}}} \text { no function of } x \\
& \frac{\frac{\partial N}{\partial x}-\frac{\partial m}{\partial y}}{m}=\frac{1}{y} \text { a function of } y!\quad \mu=e^{\int \frac{1}{b d y}}=e^{D_{y} y}=y \\
& y^{2} d x+\left(2 x y-y e^{y^{2}}\right) d y=0 \\
& F(x, y)=\int y^{2} d x=\int\left(2 x y-y e^{y^{2}}\right) d y \\
& =x y^{2}+g(y) \quad \frac{\partial F}{\partial y}=2 x y+g^{\prime}(y)=2 x y-y e^{y^{2}} \\
& g^{\prime}(y)=-y e^{y^{2}} \\
& F(x, y)=x y^{2}-\frac{1}{2} e^{y^{2}}
\end{aligned}
$$

The solutions are defined by $F(x, y)=C$

$$
y(1)=1 \Rightarrow 1 \cdot 1^{2}-\frac{1}{2} e^{1^{2}}=c \quad c=1-\frac{1}{2} e
$$

The solution to the IVP satisfies

$$
x y^{2}-\frac{1}{2} e^{y^{2}}=1-\frac{1}{2} e
$$

