Exam 2 Math 2306 sec. 58

Spring 2016

Name: (4 points) Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet (8.5 " $\times 11$ ") of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Determine whether each set of functions is linearly dependent or linearly independent on the indicated interval. Be sure that your conclusion is clearly stated and justified.
(a) $\quad f_{1}(x)=x, \quad f_{2}(x)=1, \quad f_{3}(x)=2 x-4 \quad I=(-\infty, \infty)$

Note that

$$
2 f_{1}(x)-4 f_{2}(x)-f_{3}(x)=2 x-4-(2 x-4)=0
$$

for ale x in I
we have a linear dependence relation w) $c_{1}=2, c_{2}=-4, c_{3}=-1$ (not all zeno).

Hence they are linearly dependent.

The wronskian would lead to the same conclusion (of course!).
(b) $\quad y_{1}(x)=\sqrt{x}, \quad y_{2}(x)=\frac{1}{\sqrt{x}}, \quad I=(1, \infty)$ Toke the Wronskion

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
\sqrt{x} & \frac{1}{\sqrt{x}} \\
\frac{1}{2 \sqrt{x}} & \frac{-1}{2 x^{3 / 2}}
\end{array}\right|=\frac{-\sqrt{x}}{2 x^{3 h}}-\frac{1}{2 \sqrt{x} \sqrt{x}} \\
& =\frac{-1}{2 x}-\frac{1}{2 x}=\frac{-1}{x} \neq 0
\end{aligned}
$$

Hence they ane linearly independent,
(2) An RC series circuit has a 180 volt battery applied, a resistance of 3 ohms and a capacitance of $\frac{1}{60}$ farads. If the initial charge on the capacitor $q(0)=0$, determine the charge on the capacitor $q(t)$ for $t>0$.

$$
\begin{aligned}
R \frac{d q}{d t}+\frac{1}{c} q=E \quad \text { Were } R & =3 \Omega \\
C & =\frac{1}{60} f \\
E & =180 \mathrm{~V} \\
3 \frac{d g}{d t}+60 q=180 \quad q(0)=0 &
\end{aligned}
$$

In standard form $\quad \frac{d q}{d t}+20 q=60$

$$
\begin{gathered}
P(t)=20 \text { so } \mu=e^{\int P(t) d t}=e^{20 t} \\
\frac{d}{d t}\left[e^{20 t} \underset{q}{ }\right]=60 e^{20 t} \\
\Rightarrow \int \frac{d}{d t}\left[e^{20 t} g\right] d t=\int 60 e^{20 t} d t \\
e^{20 t} q=3 e^{20 t}+k \\
q=3+k e^{-20 t}
\end{gathered}
$$

Since $q(0)=0, \quad q(0)=3+k=0 \Rightarrow k=-3$
The charg is $g(t)=3-3 e^{-20 t}$.
(3) Determine the general solution of the second order equation for which one solution is given.

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0, \quad y_{1}(x)=x^{3} \quad \text { Standard for ~ } \\
& P(x)=\frac{2}{x} \Rightarrow-\int p(x) d x=-\int \frac{2}{x} d x=-2 \ln x=\ln x^{\prime \prime} \\
& y_{2}=u y, \text { when e } u=\int \frac{e^{-\int}}{x^{2}} y=0 \\
& u=\frac{x^{2}}{-7} \quad d x=\int \frac{x^{-2}}{\left(x^{3}\right)^{2}} d x=\int x^{-8} d x \\
&
\end{aligned}
$$

The gevend solution is

$$
y=c_{1} x^{3}+c_{2} x^{-4}
$$

(4) Find the general solution of the first order linear equation.

$$
\begin{aligned}
& \frac{d y}{d x}+2 x y=4 x \quad \mathbb{P}(x)=2 x, \quad \mu=e^{\int \rho(x) d x}=e^{\int 2 x d x}=e^{x^{2}} \\
& \frac{d}{d x}\left[e^{x^{2}} y\right]=4 x e^{x^{2}} \quad \text { If } u=x^{2}, \text { then } d u=2 x d x
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{d}{d x}\left[e^{x^{2}} y\right] d x & =\int 4 x e^{x^{2}} d x \\
e^{x^{2}} y & =2 e^{x^{2}}+C \Rightarrow y=2+C e^{-x^{2}}
\end{aligned}
$$

(5) (a) Show that $y_{1}=e^{x}, y_{2}=e^{2 x}$ is a fundamental solution set for the ODE $y^{\prime \prime}-3 y^{\prime}+2 y=0$.

$$
\begin{array}{ll}
y_{1}=e^{x} & y_{1}^{\prime \prime}-3 y_{1}^{\prime}+2 y_{1}=e^{x}-3 e^{x}+2 e^{x}=0 \\
y_{1}^{\prime}=e^{x} & \left\{\begin{array}{l}
\text { both are } \\
\text { solutions }
\end{array}\right. \\
y_{1}^{\prime \prime}=e^{x} & y_{2}^{\prime \prime}-3 y_{2}^{\prime}+2 y_{2}=4 e^{2 x}-6 e^{2 x}+2 e^{2 x}=0
\end{array} \begin{aligned}
& y_{2}=e^{2 x}
\end{aligned} \quad w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
e^{x} & e^{2 x} \\
e^{x} & 2 e^{2 x}
\end{array}\right|=2 e^{3 x}-e^{3 x}=e^{3 x} \neq 0
$$

$$
y_{2}^{\prime \prime}=4 e^{2 x}
$$

we hove 2 linearly indepen dent solutions, hence they arse a fund. Soln. Set.
(b) Verify that $y_{p}=2 x+3$ solves the nonhomogeneous equation $y^{\prime \prime}-3 y^{\prime}+2 y=4 x$.

$$
\begin{aligned}
y_{p}^{\prime}=2 \\
y_{p}^{\prime \prime}=0
\end{aligned} \quad y_{p}^{\prime \prime}-3 y_{p}^{\prime}+2 y_{p}=0-3(2)+2(2 x+3)
$$

Hence $y_{p}=2 x+3$ solves the non homogeneous ODE.
(c) Find the solution of the IVP $y^{\prime \prime}-3 y^{\prime}+2 y=4 x$, with $y(0)=4, y^{\prime}(0)=2$.

$$
\begin{array}{lr}
y=c_{1} e^{x}+c_{2} e^{2 x}+2 x+3 \\
y^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x}+2 \\
y(0)=c_{1}+c_{2}+3=4 \\
y^{\prime}(0)=c_{1}+2 c_{2}+2=2
\end{array} \quad \begin{aligned}
& \\
&
\end{aligned} \quad \begin{aligned}
& c_{1}+c_{2}=1 \\
& c_{1}+2 c_{2}=0 \\
& -c_{2}=1 \\
& c_{1}-1=1 \Rightarrow c_{1}=2
\end{aligned}
$$

The solution to the $V P$ is

$$
y=2 e^{x}-e^{2 x}+2 x+3
$$

(6) A tank initially contains 200 gallons of water into which 5 pounds of salt is dissolved. Brine containing $1 \mathrm{lb} / \mathrm{gal}$ of salt is pumped in at a rate of $3 \mathrm{gal} / \mathrm{min}$. The solution is well mixed and is pumped out at the same rate. Determine the amount of salt $A(t)$ in lbs at time t in minutes for all $t>0$.

$$
\frac{d A}{d t}=r_{i} c_{i}-r_{0} c_{0} \quad \text { where } \quad c_{0}=\frac{A}{v(0)+\left(r_{i}-r_{0}\right) t}
$$

Heme $r_{i}=3 \frac{\text { gre }}{\sin }, c_{i}=1 \frac{b}{\text { gad }}, r_{0}=r_{i}=3 \frac{\text { gal }}{\min }$

$$
\begin{aligned}
& \text { so } \quad c_{0}=\frac{A}{200+0}=\frac{A}{200} \\
& \frac{d A}{d t}=3 \cdot 1-3 \cdot \frac{A}{200}, \quad A(0)=5 \\
& A^{\prime}+\frac{3}{200} A=3 \quad p(t)=\frac{3}{200} \quad \mu=e^{\int \frac{3}{200 d t}}=e^{\frac{3}{200} t} \\
& \frac{d}{d t}\left[e^{\frac{3}{200}+} A\right]=3 e^{\frac{3}{200} t} \\
& e^{\frac{3}{200} t} \quad A=\int 3 e^{\frac{3}{200} t} d t=200 e^{\frac{3}{200} t}+C \\
& A=200+C e^{\frac{-3}{200} t} \\
& \text { From } A(0)=5, \quad A(0)=200+C=5 \Rightarrow C=-195 \\
& \text { Finally, } A(t)=200-195 e^{\frac{-3}{200} t} \text {. }
\end{aligned}
$$

