Exam 2 Math 2306 sec. 59

Spring 2016

Name: (4 points) Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet (8.5 " $\times 11$ ") of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic masconduct. Show all of your work on the paper provided to receive full credit.
(1) A tank initially contains 200 gallons of water into which 5 pounds of salt is dissolved. Brine containing $1 \mathrm{lb} / \mathrm{gal}$ of salt is pumped in at a rate of $3 \mathrm{gal} / \mathrm{min}$. The solution is well mixed and is pumped out at the same rate. Determine the amount of salt $A(t)$ in lbs at time t in minutes for all $t>0$.

$$
\frac{d A}{d t}=r_{0} c_{i}-r_{0} c_{0} \text { whee } c_{0}=\frac{A}{v(0)+\left(r_{i}-r_{0}\right) t}
$$

Were $r_{i}=3 \frac{\text { gal }}{\min }, c_{i}=1 \frac{1 \mathrm{~b}}{\text { gas }}$ and $r_{0}=r_{i}=3 \frac{\mathrm{gce}}{\mathrm{min}}$
So

$$
c_{0}=\frac{A}{200+0}=\frac{A}{200} \text { also, } A(0)=5 \mathrm{lb}
$$

$$
\begin{gathered}
\frac{d A}{d t}=3 \cdot 1-3 \cdot \frac{A}{200} \Rightarrow \frac{d A}{d t}+\frac{3}{200} A=3, A(0)=5 \\
P(t)=\frac{3}{200} \Rightarrow \mu=e^{\int P(t) d t}=e^{\frac{3}{200} t} \\
\frac{d}{d t}\left[C e^{\frac{3}{200} t} A\right]=3 e^{\frac{3}{200} t} \\
e^{\frac{3}{200 t}} A=\int 3 e^{\frac{3}{200} t} d t=200 e^{\frac{3}{200} t}+C \\
A=200+C e^{-\frac{3}{200} t}
\end{gathered}
$$

From $A(0)=5, \quad A(x)=200+C=5 \Rightarrow C=-195$

The amount of salt e time t is

$$
A(t)=200-195 e^{\frac{-3}{200} t} \text { pounds. }
$$

(2) Determine the general solution of the second order equation for which one solution is given.

Standard form

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0, \quad y_{1}(x)=x^{-4} y^{\prime \prime}+\frac{2}{x} y^{\prime}-\frac{12}{x^{2}} y=0 \quad P(x)=\frac{2}{x} \\
& y_{2}=u y, \text { when e } u=\int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x=\int \frac{e^{-\int \frac{2}{x} d x}}{\left(x^{-4}\right)^{2}} d x=\int \frac{e^{-2 \ln x}}{x^{-8}} d x \\
&=\int \frac{x^{-2}}{x^{-8}} d x=\int x^{6} d x=\frac{1}{7} x^{7}
\end{aligned}
$$

We can ignore the factor $\frac{1}{7}$ and take

$$
y_{2}=x^{7} \cdot x^{-4}=x^{3}
$$

The general solution is $y=C_{1} \bar{x}^{4}+C_{2} x^{3}$
(3) Find the general solution of the first order linear equation.

$$
\begin{aligned}
& \frac{d y}{d x}+3 x^{2} y=6 x^{2} \quad P(x)=3 x^{2} \Rightarrow \mu=e^{\int P(x) d x}=e^{x^{3}} \\
& \frac{d}{d x}\left[e^{x^{3}} y\right]=6 x^{2} e^{x^{3}} \quad \text { If } u=x^{3}, d u=3 x^{2} d x \\
& \quad \int 6 x^{2} e^{x^{3}} d x=2 \int e^{u} d u=2 e^{u}+C \\
& e^{x^{3}} y=\int 6 x^{2} e^{x^{3} d x}=2 e^{x^{3}+C} \\
& \text { So } y=2+C e^{-x^{3}}
\end{aligned}
$$

(4) Determine whether each set of functions is linearly dependent or linearly independent on the indicated interval. Be sure that your conclusion is clearly stated and justified.
(a) $\quad y_{1}(x)=e^{x}, \quad y_{2}(x)=x^{2} e^{x} \quad I=(-\infty, \infty)$

Computing the Wronckion

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
e^{x} & x^{2} e^{x} \\
e^{x} & 2 x e^{x}+x^{2} e^{x}
\end{array}\right| \\
& =2 x^{2 x} e^{x}+x^{2} e^{2 x}-x^{2} e^{2 x}=2 x e^{2 x} \neq 0
\end{aligned}
$$

The wronskion is not identically zeno. Hence the functions are linearly independent.
(b) $\quad f_{1}(x)=x+1, \quad f_{2}(x)=x-1, \quad f_{3}(x)=4 x, \quad I=(1, \infty)$

Not that

$$
\begin{aligned}
& 2 f_{1}(x)+2 f_{2}(x)-f_{3}(x)= \\
& 2(x+1)+2(x-1)-4 x=4 x-4 x=0 \\
& \quad f_{\text {or al }} x \text { in I. }
\end{aligned}
$$

We hour a lines deperden a relation with $c_{1}=2, c_{2}=2, c_{3}=-1$ (not de zero)

Hence the functions are linearly dependent.
(5) (a) Show that $y_{1}=e^{x}, y_{2}=e^{3 x}$ is a fundamental solution set for the ODE $y^{\prime \prime}-4 y^{\prime}+3 y=0$.

$$
\begin{aligned}
& y_{1}=e^{x}, y_{1}^{\prime}=e^{x} y_{1}^{\prime \prime}=e^{x} \\
& y_{1}^{\prime \prime}-4 y_{1}^{\prime}+3 y_{1}=e^{x}-4 e^{x}+3 e^{x}=0 \\
& w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
e^{x} & e^{3 x} \\
e^{x} 3 e^{3 x}
\end{array}\right| \quad \text { we } \\
& =3 e^{4 x}-e^{4 x} \quad \text { sold } \\
& =2 e^{4 x} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=e^{3 x}, y_{2}^{\prime}=3 e^{3 x}, y_{2}^{\prime \prime}=9 e^{3 x} \\
& y_{2}^{\prime \prime}-4 y_{2}^{\prime}+3 y_{2}= \\
& 9 e^{3 x}-12 e^{3 x}+3 e^{3 x}=0
\end{aligned}
$$

We have 2 linearly independent solutions and hence a fundament de solution set.
(b) Verify that $y_{p}=3 x+4$ solves the nonhomogeneous equation $y^{\prime \prime}-4 y^{\prime}+3 y=9 x$.

$$
\begin{aligned}
y_{p}^{\prime}=3 & y_{p}^{\prime \prime}-4 y_{p}^{\prime}+3 y_{p} \\
y_{p}^{\prime \prime}=0 & =0-4 \cdot 3+3(3 x+4) \\
& =-12+9 x+12=9 x \\
& =9
\end{aligned}
$$

So ye solves the non homogeneous ODE,
(c) Find the solution of the IVP $y^{\prime \prime}-4 y^{\prime}+3 y=9 x$, with $y(0)=4, y^{\prime}(0)=1$.

$$
\begin{aligned}
& y=c_{1} e^{x}+c_{2} e^{3 x}+3 x+4 \quad \text { genend solution } \\
& y^{\prime}=c_{1} e^{x}+3 c_{2} e^{3 x}+3 \\
& y(0)=c_{1}+c_{2}+4=4 \quad \Rightarrow \quad c_{1}+c_{2}=0 \\
& y^{\prime}(0)=c_{1}+3 c_{2}+3=1 \\
& c_{1}+3 c_{2}=-2 \\
& -2 c_{2}=2 \quad c_{2}=-1 \\
& c_{1}-1=0 \Rightarrow c_{1}=1
\end{aligned}
$$

The solution to the IVP is

$$
y=e^{x}-e^{3 x}+3 x+4
$$

(6) An RC series circuit has a 240 volt battery applied, a resistance of 5 ohms and a capacitance of $\frac{1}{60}$ farads. If the initial charge on the capacitor $q(0)=0$, determine the charge on the capacitor $q(t)$ for $t>0$.

$$
\begin{aligned}
& R \frac{d g}{d t}+\frac{1}{c} q=E \\
& 5 \frac{d g}{d t}+60 g=240 \\
& \frac{d q}{d t}+12 g=48 \quad q(0)=0 \\
& P(t)=12 \text { so } \mu=e^{\int P(t) d t}=e^{12 t} \\
& \frac{d}{d t}\left[e^{12 t} q\right]=48 e^{12 t} \\
& e^{12 t} q=\int 48 e^{12 t} d t=4 e^{12 t}+k \\
& q=4+k e^{-12 t} \\
& \text { As } q(0)=0, \quad q(0)=4+k=0 \Rightarrow k=-4
\end{aligned}
$$

The charge on the capacitor is

$$
q(t)=4-4 e^{-12 t} .
$$

