Exam 2 Math 2306 sec. 60

Fall 2018
Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.
Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet (8.5 " $\times 11$ ") of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Let a be a constant, and consider the pair of functions $y_{1}=x^{2}+a x$ and $y_{2}=x^{2}$ defined in the interval $(0, \infty)$.
(a) Find the Wronskian of y_{1} and y_{2}.

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
x^{2}+a x & x^{2} \\
2 x+a & 2 x
\end{array}\right|=2 x^{3}+2 a x^{2}-\left(2 x^{3}+a x^{2}\right)
$$

$$
w=a x^{2}
$$

(b) For what values of a is the pair of functions linearly independent? (Justify)

$$
\begin{gathered}
\text { They are lineolyimdegendent if } W \neq 0 \\
\text { This holds for all } a \neq 0
\end{gathered}
$$

2. Find the general solution of the second order, linear differential equation. One solution is provided. Assume $x>0$.

$$
\begin{array}{ll}
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0, \quad y_{1}=x^{3} \quad & \text { Standard form } \\
& y^{\prime \prime}-\frac{5}{x} y^{\prime}+\frac{9}{x^{2}} y \quad P(x)=\frac{-5}{x}
\end{array}
$$

$$
y_{2}=4 y
$$

where $h=\int \frac{e^{-\int \rho(x) d x}}{(y,)^{2}}$

$$
e^{-\int \rho(x) d x}=e^{-\int \frac{-5}{x} d x}=e^{\int \frac{5}{x} d x}=e^{\ln x}=x^{5}
$$

$$
\left(y_{1}\right)^{2}=\left(x^{3}\right)^{2}=x^{6}
$$

$$
u=\int \frac{x^{5}}{x^{6}} d x=\int \frac{1}{x} d x=\ln x
$$

so $y_{2}=x^{3} \ln x$
and the general solution is

$$
y=c_{1} x^{3}+c_{2} x^{3} \ln x
$$

3. A tank initially contains 100 liters of water into which 5 kg of salt is dissolved. Salt water containing $0.1 \mathrm{~kg} / \mathrm{L}$ of salt flows in at a rate of $10 \mathrm{~L} / \mathrm{min}$, and the well mixed solution is pumped out at the same rate. Determine the amount of salt $A(t)$ in kg in the tank at the time t in minutes.

$$
\begin{aligned}
& V(0)=100 \mathrm{~L} \text { and } A(0)=5 \mathrm{~kg} \\
& r_{i}=10 \frac{\mathrm{~L}}{\mathrm{~min}} \text { and } r_{0}=10 \mathrm{~L} \mathrm{~min} \\
& \text { So } V(t)=100 \mathrm{~L} \text { for all } t \\
& c_{i}=0.1 \frac{\mathrm{~kg}}{L} \Rightarrow r_{i c_{i}}=1 \frac{\mathrm{hg}}{\min } \\
& \frac{d A}{d t}+r_{0} c_{0}=r_{i} c_{i} \quad \frac{d A}{d t}+10 \frac{A}{100}=1 \\
& P(t)=\frac{1}{10} \quad \mu=e^{\int \frac{1}{10} d t}=e^{\frac{1}{10} t} \\
& \frac{d}{d t}\left(e^{\frac{1}{10} t} A\right)=e^{\frac{1}{10} t} \Rightarrow e^{\frac{1}{10} t} A=10 e^{\frac{1}{10} t}+C \\
& A=10+C e^{-\frac{1}{10} t} \\
& A(0)=5=10+C \Rightarrow C=-5
\end{aligned}
$$

The ament of salt is

$$
A(t)=10-5 e^{\frac{-1}{10} t} \quad k_{g}
$$

4. Consider the nonhomogeneous, linear differential equation

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=8 x+1, \quad \text { for } \quad 0<x<\infty
$$

(a) Verify that $y_{p_{1}}=2 x^{2}$ is a solution of $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=8 x$.

$$
\begin{aligned}
& y_{p_{1}}^{\prime}=4 x \\
& y_{p_{1}}^{\prime \prime}=4
\end{aligned}
$$

$$
\begin{aligned}
x(4)+(4 x) & \stackrel{?}{=} 8 x \\
8 x & =8 x
\end{aligned} \quad y_{p} \text { is a solution }
$$

true
(b) Verify that $y_{p_{2}}=x$ is a solution of $\quad x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=1$.

$$
\begin{array}{rl}
y_{p_{2}^{\prime}}^{\prime}=1 & x(0)+(1)^{\frac{?}{=}} \\
y_{p_{2}^{\prime \prime}}^{\prime \prime}=0 & 1=1 \\
& +r v e
\end{array} \quad \begin{aligned}
& p_{2} \text { is a s.intion }
\end{aligned}
$$

(c) Given that the general solution of $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$ is $y=c_{1}+c_{2} \ln x$, find the solution of the initial value problem

$$
\begin{array}{rl}
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=8 x+1, \quad y(1)=1, \quad y^{\prime}(1)=0 \\
y=y_{c}+y_{p} \text { and } y_{p}=y_{p}+y_{p 2} & y(1)=c_{1}+c_{2} \ln 1+2 \cdot 1^{2}+1=1 \\
y=c_{1}+c_{2} \ln x+2 x^{2}+x \quad c_{1}+3=1 \\
y^{\prime}=\frac{c_{2}}{x}+4 x+1 & c_{1}=-2 \\
y^{\prime}(1)=\frac{c_{2}}{1}+4 \cdot 1-11=0 \\
c_{2}=-5
\end{array}
$$

The solution to the IVP is

$$
y=-2-5 \ln x+2 x^{2}+x
$$

5. Solve the initial value problem

$$
\begin{gathered}
y d x+\left(2 x-\frac{e^{y}}{y}\right) d y=0 \quad y(1)=1 \\
\frac{\partial M}{\partial y}=1 \quad \frac{\partial U}{\partial x}=2 \quad \text { not exact } \\
\frac{\partial m}{\partial \partial}-\frac{\partial N}{\partial x}=\frac{-1}{2 x-e^{y}} / b \text { depends on } y \\
\frac{\partial N}{\partial x}-\frac{\partial m}{\partial y}=\frac{1}{y} \text { depends an ls on } y \quad \mu=e^{\int \frac{1}{5} d y}=e^{a n y}=y \\
y^{2} d x+\left(2 x y-e^{y}\right) d y=0
\end{gathered}
$$

Solutions satisfy $F(x, y)=C$ where

$$
\begin{array}{r}
F(x, y)=\int y^{2} d x=\int\left(2 x y-e^{y}\right) d \partial \\
F(x, y)=y^{2} x+g(y) \quad \frac{\partial F}{\partial y}=2 y x+g^{\prime}(0)=2 x y-e^{y} \\
g^{\prime}(y)=-e^{y} \\
g(y)=-e^{y}
\end{array}
$$

Solutions are $x^{2} y-e^{y}=C$
Apply $y(1)=1 \quad 1^{2} \cdot 1-e^{1}=c \quad \Rightarrow \quad c=1-e$

The solution to the $\backslash V \rho$ is defined by

$$
x^{2} y-e^{y}=1-e
$$

