Exam 2 Math 3260 sec. 51

Spring 2020
Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.
Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems worth 20 points each. Do any 5 problems (I'll count your best 5). No calculator use is allowed, and no calculator use is needed. Use of a textbook, notes, calculator or smart device is strictly prohibited. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Find bases for $\operatorname{Nul}(A)$ and $\operatorname{Col}(A) . A$ and the ref of A are given.

$$
A=\left[\begin{array}{rrrrr}
-2 & 2 & -3 & -2 & -8 \\
3 & -3 & 3 & 1 & 10 \\
2 & -2 & 2 & 0 & 4
\end{array}\right]
$$

$$
\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 6 \\
0 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

$$
\text { If } A \vec{x}=\overrightarrow{0}_{0}, \quad x_{1}=x_{2}-6 x_{5}
$$

A Basis for:

$$
x_{3}=4 x_{5}
$$

$$
\text { NolA is }\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
6 \\
0 \\
4 \\
-4 \\
1
\end{array}\right]\right\}
$$

$$
x_{4}=-4 x_{5}
$$

$$
x_{2}, x_{5} \text { - free }
$$

$$
\vec{x}=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-6 \\
0 \\
4 \\
-4 \\
1
\end{array}\right]
$$

$$
\operatorname{Cog} A \cdot s\left\{\left[\begin{array}{c}
-2 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-3 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]\right\}
$$

$$
\begin{gathered}
\text { Pivot columns are } \\
1,3,4
\end{gathered}
$$

View vectors in \mathbb{R}^{n} as $n \times 1$ matrices. For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the matrix product $\mathbf{u}^{T} \mathbf{v}$ is a 1×1 matrix (called the scalar product) that is usually written as a number without brackets. The matrix product $\mathbf{u v}^{T}$ is an $n \times n$ matrix (called the outer product).
2. Consider the following vectors.

$$
\mathbf{u}=\left[\begin{array}{r}
2 \\
-2 \\
3
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{r}
3 \\
-2
\end{array}\right] \quad(a, b, c \text { are real numbers })
$$

(a) Compute $\mathbf{u}^{T} \mathbf{v}$.

$$
\begin{aligned}
& \vec{u} T \vec{v}=\left[\begin{array}{lll}
2 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=2 a-2 b+3 c \\
& \quad \mid \times 1
\end{aligned}
$$

(b) Compute $\mathbf{u v}^{T}$.

$$
\left.\begin{array}{l}
\text { Compute uv}{ }^{T} \text {. } \\
\vec{u} \vec{v}^{T}=\left[\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right][a \quad b c
\end{array}\right]=\left[\begin{array}{ccc}
2 a & 2 b & 2 c \\
-2 a & -2 b & -2 c \\
3 a & 3 b & 3 c
\end{array}\right]
$$

(c) Compute the 2×2 matrix $\mathbf{x x}^{T}$.

$$
\begin{aligned}
& \vec{x} \vec{x}^{T}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right][3-2]=\left[\begin{array}{cc}
9 & -6 \\
-6 & 4
\end{array}\right] \\
& 2 \times 2
\end{aligned}
$$

(d) Determine whether $\mathbf{x x}^{T}$ is singular or nonsingular. If nonsingular, compute its inverse.

$$
\operatorname{det}\left(\vec{x} \vec{x}^{\top}\right)=9(4)-(-6)^{2}=36-36=0
$$

3. Answer each short computational problem. Here, I_{n} is the $n \times n$ identity matrix.
(a) Suppose A, B, and C are $n \times n$ invertible matrices. Does the equation

$$
C^{-1}(X+A) B^{-1}=I_{n}
$$

have a solution X ? If so, find it.

$$
\begin{aligned}
& C^{-1}(X+A) B^{-1}=I \Rightarrow C C^{-1}(X+A)^{-1} B=C I B \\
& X+A=C B \Rightarrow C B-A
\end{aligned}
$$

(b) Suppose A and B are 3×3 matrices with $\operatorname{det}(A)=-2$ and $\operatorname{det}(B)=5$. Evaluate each of
(i) $\operatorname{det}\left(A^{3}\right)=(-2)^{3}=-8$
(ii) $\operatorname{det}\left(B^{T} A\right)=S \underline{(-2)}=-10$
(iii) $\operatorname{det}\left(A^{-1} B\right)=\frac{-1}{2}(5)=\frac{-5}{2}$
(iv) $\operatorname{det}\left(B^{-1} A B\right)=\frac{1}{5}(-2) 5=-2$
(c) Suppose et $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=4$. Evaluate each determinant. $\operatorname{det}\left[\begin{array}{rrr}a & b & c \\ d & e & f \\ 3 g & 3 h & 3 i\end{array}\right]=12 \quad 3 R_{3} \rightarrow R_{3}$ $\operatorname{det}\left[\begin{array}{lll}g & h & i \\ d & e & f \\ a & b & c\end{array}\right]=\underline{-4}$

$$
R_{1} \leftrightarrow R_{3}
$$

$\operatorname{det}\left[\begin{array}{rrr}a & b & c \\ d+2 a & e+2 b & f+2 c \\ g & h & i\end{array}\right]=4 \quad 2 R_{1}+R_{2} \Rightarrow R_{2}$
4. Determine the values of the parameter s for which the system of equations has a unique solution. For those values of s use Crammer's rule to obtain the solutions X and Y.

$$
\left.\begin{array}{c}
s X-2 s Y=1 \\
3 X+12 s Y=-1
\end{array} \quad\left[\begin{array}{cc}
s & -2 s \\
3 & 12 s
\end{array}\right]\left[\begin{array}{l}
x \\
Y
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \begin{array}{c}
b
\end{array}\right] \quad \operatorname{det}(A)=0 \quad \text { if } s=0 \text { or } s=\frac{-1}{2}
$$

Then is a unique solution if $s \neq 0$ and $S \neq \frac{-1}{2}$.

$$
\begin{aligned}
& \operatorname{det}\left(A_{1}(\vec{b})\right)=\left|\begin{array}{cc}
1 & -2 s \\
-1 & 12 s
\end{array}\right|=12 s-2 s=10 s \\
& \operatorname{det}\left(A_{2}(b)\right)=\left|\begin{array}{cc}
s & 1 \\
3 & -1
\end{array}\right|=-s-3=-(s+3) \\
& \text { For } s \neq 0 \text { and } s \neq-\frac{1}{2} \quad X=\frac{10 s}{6 s(2 s+1)}=\frac{5}{3(2 s+1)} \\
& \qquad Q=\frac{-(s+3)}{6 s(2 s+1)}
\end{aligned}
$$

5. Show that the linear transformation is invertible, and find a formula for T^{-1}. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $T\left(x_{1}, x_{2}\right)=\left(5 x_{1}+4 x_{2}, 2 x_{1}+2 x_{2}\right)$.

Standard matrix $A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]=\left[\begin{array}{ll}5 & 4 \\ 2 & 2\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det}(A)=10-8=2 \neq 0 \quad T^{-1} \text { exists. } \\
& A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
2 & -4 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
-1 & \frac{5}{2}
\end{array}\right] \\
& T^{-1}(\vec{x})=A^{-1} \vec{x}=\left[\begin{array}{cc}
1 & -2 \\
-1 & \frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-2 x_{2} \\
-x_{1}+\frac{5}{2} x_{2}
\end{array}\right] \\
& \frac{-1}{1}\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2},-x_{1}+\frac{5}{2} x_{2}\right)
\end{aligned}
$$

6. Find a basis for each subspace of the indicated vector space.
(a) The set of vectors in \mathbb{R}^{3} that are on the plane $x+2 y-5 z=0$. (Hint: Think of the equation as a homogeneous linear system.)

$$
\begin{array}{r}
x=-2 y+5 z, y z \text {-free } \\
\vec{x}=y\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
5 \\
0 \\
1
\end{array}\right]
\end{array}
$$

$$
A \text { basis is }\left\{\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right]\right\}
$$

(b) The set of matrices in $M^{2 \times 2}$ of the form $\left[\begin{array}{ll}a & b \\ 0 & 2 b\end{array}\right]$.

$$
\left[\begin{array}{cc}
a & b \\
0 & 2 b
\end{array}\right]=a\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right]
$$

$$
A \text { basis is }\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right]\right\}
$$

7. Recall that \mathbb{P}_{n} denotes the vectors space consisting of all polynomials of degree at most n.

Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{p})=\left[\begin{array}{c}2 \mathbf{p}(0) \\ -\mathbf{p}(0)\end{array}\right]$.
(a) Evaluate $T\left(\mathbf{p}_{1}\right)$ if $\mathbf{p}_{1}(t)=2+t-t^{2}$

$$
\vec{P}_{1}(0)=2 \quad T(\vec{p},)=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

(b) Evaluate $T\left(\mathbf{p}_{2}\right)$ if $\mathbf{p}_{2}(t)=2 t$

$$
\vec{p}_{2}(0)=0 \quad T\left(\vec{p}_{2}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(c) Evaluate $T\left(\mathbf{p}_{3}\right)$ if $\mathbf{p}_{3}(t)=4 t^{2}+2 t-3$

$$
\vec{p}_{3}(0)=-3 \quad T\left(\vec{p}_{3}\right)=\left[\begin{array}{c}
-6 \\
3
\end{array}\right]
$$

(d) Find a vector \mathbf{u} in \mathbb{R}^{2} that spans the range of T.

$$
T(\vec{p})=\vec{p}(0)\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \text { we can take } \vec{u}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

(e) Find any vector \mathbf{p} in \mathbb{P}_{2} that is in the kernel of T

$$
\begin{aligned}
& \text { Using part (b) above } T\left(\vec{p}_{2}\right)=\left[\begin{array}{l}
0 \\
j
\end{array}\right] \\
& \text { So we car. Choose } \vec{p}=\vec{p}_{2}=z t
\end{aligned}
$$

