Exam 2 Math 3260 sec. 51

Spring 2020

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature: _____

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems worth 20 points each. Do any 5 problems (I'll count your best 5). No calculator use is allowed, and no calculator use is needed. Use of a textbook, notes, calculator or smart device is strictly prohibited. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Find bases for Nul(A) and Col(A). A and the rref of A are given.

$A = \begin{bmatrix} -2 & 2 & -3 & -2 & -8 \\ 3 & -3 & 3 & 1 & 10 \\ 2 & -2 & 2 & 0 & 4 \end{bmatrix}$	$\operatorname{rref}(A) = \left[\begin{array}{rrrr} 1 & -1 & 0 & 0 & 6 \\ 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 1 & 4 \end{array} \right]$
	$ f A X = 0, X_1 = X_2 - 6 X_5$
A Basis for:	$X_3 = 4 \times s$
NulA is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 4 \\ -4 \\ 1 \end{bmatrix} \right\}$	$X_{y} = -4XS$ $X_{z}, X_{s} - free$ $X_{z}, X_{s} - free$ $X_{z} = X_{z} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + X_{s} \begin{pmatrix} -b \\ 0 \\ 4 \\ -Y \\ 1 \end{pmatrix}$
$ColA^{\prime}, s \left\{ \begin{bmatrix} -2\\ 3\\ 2 \end{bmatrix}, \begin{bmatrix} -3\\ 3\\ 2 \end{bmatrix}, \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} \right\}$	} Pivot columne are 13,4

View vectors in \mathbb{R}^n as $n \times 1$ matrices. For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix (called the scalar product) that is usually written as a number without brackets. The matrix product \mathbf{u}^T is an $n \times n$ matrix (called the outer product).

2. Consider the following vectors.

$$\mathbf{u} = \begin{bmatrix} 2\\-2\\3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} a\\b\\c \end{bmatrix}, \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} 3\\-2 \end{bmatrix} \quad (a, b, c \text{ are real numbers}).$$

(a) Compute $\mathbf{u}^T \mathbf{v}$.

$$\begin{array}{c}
\overline{\mu} T \overline{\nu} = \begin{bmatrix} 2 & -2 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ -2 \end{bmatrix} = 2a - 2b + 3c$$

$$\begin{array}{c}
|x| \\ |x|
\end{array}$$

(b) Compute $\mathbf{u}\mathbf{v}^T$.

$$\vec{u}\vec{v}^{T} = \begin{bmatrix} 2\\ -2\\ 3 \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} 2a & 2b & 2c \\ -2a & -2b & -2c \\ -2a & -2b & -2c \\ 3c & 3b & 3c \\ 3x & 3 \end{bmatrix}$$

(c) Compute the 2×2 matrix $\mathbf{x}\mathbf{x}^T$.

$$\vec{X} \cdot \vec{X} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \begin{bmatrix} 3 - 2 \end{bmatrix} = \begin{bmatrix} 9 & -6 \\ -6 & 4 \end{bmatrix}$$

 $2x_1$ $1x_2$
 $2x_2$

(d) Determine whether $\mathbf{x}\mathbf{x}^T$ is singular or nonsingular. If nonsingular, compute its inverse.

$$det(\vec{x} \cdot \vec{x}^{T}) = 9(4) - (-6)^{2} = 36 - 36 = 0$$

$$\vec{x} \cdot \vec{x}^{T} \quad is \quad singular$$

- **3.** Answer each short computational problem. Here, I_n is the $n \times n$ identity matrix.
 - (a) Suppose A, B, and C are $n \times n$ invertible matrices. Does the equation

$$C^{-1}(X+A)B^{-1} = I_n$$

have a solution X? If so, find it.

$$C'(X + A)\overline{R}' = \overline{L} \Rightarrow CC'(X + A)\overline{R}B = C\overline{L}B$$

 $X + A = CB \Rightarrow X = CB - A$

(b) Suppose A and B are 3×3 matrices with det(A) = -2 and det(B) = 5. Evaluate each of

(i)
$$\det(A^3) = (-2)^3 = -8$$

(ii) $\det(B^T A) = 5(-2) = -10$
(iii) $\det(A^{-1}B) = \frac{-1}{2(5)} = \frac{-5}{2}$
(iv) $\det(B^{-1}AB) = \frac{-1}{5(-2)} = -2$

(c) Suppose det
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 4$$
. Evaluate each determinant.
det $\begin{bmatrix} a & b & c \\ d & e & f \\ 3g & 3h & 3i \end{bmatrix} = -\frac{12}{3R_3 \rightarrow R_3}$
det $\begin{bmatrix} g & h & i \\ d & e & f \\ a & b & c \end{bmatrix} = -\frac{12}{R_1}$
R_1 = R_3
det $\begin{bmatrix} d & e & f \\ d & e & f \\ a & b & c \end{bmatrix} = -\frac{12}{R_1}$
det $\begin{bmatrix} a & b & c \\ d+2a & e+2b & f+2c \\ g & h & i \end{bmatrix} = -\frac{14}{R_1}$
QL1 + R2 = R2

4. Determine the values of the parameter s for which the system of equations has a unique solution. For those values of s use Crammer's rule to obtain the solutions X and Y.

$$sX - 2sY = 1$$

$$3X + 12sY = -1$$

$$\begin{cases} S - 2s \\ 3 & 12s \end{cases} \begin{bmatrix} X \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$A$$

$$b$$

$$det(A) = 12s^{2} + 6s = 6s(2s + 1) \quad det(A) = 0 \quad \text{if } s = 0 \text{ or } s = \frac{1}{2}.$$

$$det(A) = 12s^{2} + 6s = 6s(2s + 1) \quad det(A) = 0 \quad \text{if } s = 0 \text{ or } s = \frac{1}{2}.$$

$$det(A, (b)) = \begin{vmatrix} 1 & -2s \\ -1 & 12s \end{vmatrix} = 12s - 2s = 10s$$

$$det(A_{2}(b)) = \begin{vmatrix} S & 1 \\ 3 & -1 \end{vmatrix} = -s - 3 = -(S+3)$$
For $S \neq 0$ and $S \neq -\frac{1}{2}$

$$X = \frac{10s}{6s(2s + 1)} = \frac{5}{3(2s + 1)}$$

$$Q = -\frac{(S+3)}{6s(2s + 1)}$$

5. Show that the linear transformation is invertible, and find a formula for T^{-1} . $T : \mathbb{R}^2 \to \mathbb{R}^2$ where $T(x_1, x_2) = (5x_1 + 4x_2, 2x_1 + 2x_2)$.

Standard metrix
$$A = [T(\vec{e}_1 | T(\vec{e}_2)] = \begin{bmatrix} 5 & 4\\ 2 & 2 \end{bmatrix}$$

 $d_{2}(A) = 10 - 8 = 2 \neq 0$ T^{-1} exists.
 $A^{-1} = \frac{1}{2} \begin{bmatrix} 2 & -4\\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -2\\ -1 & \frac{5}{2} \end{bmatrix}$
 $T^{-1}(\vec{x}) = \vec{A}^{T} \vec{x} = \begin{bmatrix} 1 & -2\\ -1 & \frac{5}{2} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2\\ -x_1 + \frac{5}{2}x_2 \end{bmatrix}$
 $\overline{T}(x_1 - \frac{5}{2}x_2) = (x_1 - 2x_2, -x_1 + \frac{5}{2}x_2)$

- 6. Find a basis for each subspace of the indicated vector space.
 - (a) The set of vectors in \mathbb{R}^3 that are on the plane x + 2y 5z = 0. (Hint: Think of the equation as a homogeneous linear system.)

$$X = -2y + 5z, \quad y, z - free$$

$$\bar{X} = y \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$$

$$A \quad basis \quad is \quad \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} \right\}$$

(b) The set of matrices in $M^{2\times 2}$ of the form $\begin{bmatrix} a & b \\ 0 & 2b \end{bmatrix}$.

$$\begin{bmatrix} a & b \\ 0 & zb \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 6 & z \end{bmatrix}$$

A basis is
$$\begin{cases} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & z \end{bmatrix}$$

7. Recall that \mathbb{P}_n denotes the vectors space consisting of all polynomials of degree at most n.

Consider the linear transformation $T : \mathbb{P}_2 \to \mathbb{R}^2$ defined by $T(\mathbf{p}) = \begin{bmatrix} 2\mathbf{p}(0) \\ -\mathbf{p}(0) \end{bmatrix}$.

(a) Evaluate $T(\mathbf{p}_1)$ if $\mathbf{p}_1(t) = 2 + t - t^2$

$$\overline{P}_{1}(0) = 2$$
 $T(\overline{p}_{1}) = \begin{bmatrix} 4\\ -2 \end{bmatrix}$

(b) Evaluate $T(\mathbf{p}_2)$ if $\mathbf{p}_2(t) = 2t$

$$\vec{p}_2(o) = 0$$
 $T(\vec{p}_2) = \begin{bmatrix} 6\\ 0 \end{bmatrix}$

(c) Evaluate $T(\mathbf{p}_3)$ if $\mathbf{p}_3(t) = 4t^2 + 2t - 3$

$$\vec{p}_3(\omega) = -3$$
 $T(\vec{p}_3) = \begin{bmatrix} -6\\ 3 \end{bmatrix}$

(d) Find a vector **u** in \mathbb{R}^2 that spans the range of *T*.

$$T(\vec{p}) = \vec{p}(0) \begin{bmatrix} z \\ -1 \end{bmatrix}$$
 we can take $\vec{u} = \begin{bmatrix} z \\ -1 \end{bmatrix}$

(e) Find any vector \mathbf{p} in \mathbb{P}_2 that is in the kernel of T

Using part (b) above
$$T(\vec{p}_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

So we can choose $\vec{p} = \vec{p}_2 = Zt$