Exam 2 Math 3260 sec. 55

Spring 2020

Name:	Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems worth 20 points each. Do any 5 problems (I'll count your best 5). No calculator use is allowed, and no calculator use is needed. Use of a textbook, notes, calculator or smart device is strictly prohibited. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Find bases for Nul(A) and Col(A). A and the rref of A are given.

$$A = \begin{bmatrix} 3 & -6 & 1 & 6 & 14 \\ -1 & 2 & 0 & -1 & -4 \\ 2 & -4 & 1 & 5 & 10 \end{bmatrix}$$
 rref(A) =
$$\begin{bmatrix} 1 & -2 & 0 & 1 & 4 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & -2 & 0 & 1 & 4 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis for Null A is $\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ -3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 0 \\ -2 \\ 0 \end{bmatrix}$

$$ColA : S \left\{ \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

View vectors in \mathbb{R}^n as $n \times 1$ matrices. For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix (called the scalar product) that is usually written as a number without brackets. The matrix product $\mathbf{u}\mathbf{v}^T$ is an $n \times n$ matrix (called the outer product).

2. Consider the following vectors.

$$\mathbf{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -2 \\ 4 \\ 3 \end{bmatrix}, \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \quad (a, b, c \text{ are real numbers}).$$

(a) Compute $\mathbf{u}^T \mathbf{v}$.

$$\overrightarrow{U} + \overrightarrow{V} = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} -2 \\ 4 \\ 3 \end{bmatrix} = -2a + 4b + 3c$$

$$|\times|$$

(c) Compute the 2×2 matrix $\mathbf{x}\mathbf{x}^T$.

$$\vec{X}\vec{X}^T = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \begin{bmatrix} 5 & 2 \end{bmatrix} = \begin{bmatrix} 25 & 10 \\ 10 & 4 \end{bmatrix}$$

(d) Determine whether $\mathbf{x}\mathbf{x}^T$ is singular or nonsingular. If nonsingular, compute its inverse.

$$det(\vec{x}\vec{x}\vec{1}) = 100 - 100 = 0$$

$$\vec{x}\vec{x}\vec{1} \quad \text{is sinsular}$$

- **3.** Answer each short computational problem. Here, I_n is the $n \times n$ identity matrix.
 - (a) Suppose A, B, and C are $n \times n$ invertible matrices. Does the equation

$$B^{-1}(X+C)A^{-1} = I_n$$

have a solution X? If so, find it.

$$\mathcal{B}'(x+c)A' = I \Rightarrow \mathcal{B}\mathcal{B}'(x+c)A'A = \mathcal{B}IA$$

$$X+C = \mathcal{B}A$$

$$\Rightarrow X = \mathcal{B}A - C$$

- (b) Suppose A and B are 3×3 matrices with $\det(A) = 4$ and $\det(B) = -3$. Evaluate each of
 - (i) $\det(B^3) = \frac{(-3)^3 = -2}{}$
- (ii) $\det(A^T B) = \underbrace{\Psi(-3) = -12}$
- (iii) $\det(B^{-1}A) = \frac{-\frac{1}{3}(4) \frac{4}{3}}{3}$ (iv) $\det(A^{-1}BA) = \frac{\frac{1}{4}(-3)4}{4} = -3$
- (c) Suppose $\det \begin{bmatrix} a & b & c \\ d & e & f \\ a & b & i \end{bmatrix} = -5$. Evaluate each determinant.

$$\det \begin{bmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{bmatrix} = \underline{- \mid 0}$$

$$\det \left[\begin{array}{ccc} g & h & i \\ d & e & f \\ a & b & c \end{array} \right] = \underline{\hspace{1cm}}$$

4. Determine the values of the parameter s for which the system of equations has a unique solution. For those values of s use Crammer's rule to obtain the solutions X and Y.

5. Show that the linear transformation is invertible, and find a formula for T^{-1} . $T: \mathbb{R}^2 \to \mathbb{R}^2$ where $T(x_1, x_2) = (3x_1 + 5x_2, 4x_1 + 6x_2)$.

Standard matrix
$$A = \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$$

$$dt(A) = 18 - 20 = -2 \neq 0 \qquad T' = 2x \cdot 5 + x$$

$$A^{-1} = -\frac{1}{2} \begin{bmatrix} 6 & -5 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} -3 & \frac{5}{2} \\ 2 & -\frac{3}{2} \end{bmatrix}$$

$$T'(\vec{x}) = \vec{A} \cdot \vec{x} = \begin{bmatrix} -3 & \frac{5}{2} \\ 2 & -\frac{3}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3x_1 + \frac{5}{2}x_2 \\ 2x_1 - \frac{3}{2}x_2 \end{bmatrix}$$

$$\overline{ } (x_1, X_2) = \left(-3x_1 + \frac{5}{2}x_2, 2x_1 - \frac{3}{2}x_2 \right)$$

- **6.** Find a basis for each subspace of the indicated vector space.
 - (a) The set of matrices in $M^{2\times 2}$ of the form $\begin{bmatrix} 2a & 0 \\ a & b \end{bmatrix}$.

$$\begin{bmatrix} 2a & 0 \\ a & b \end{bmatrix} = a \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

(b) The set of vectors in \mathbb{R}^3 that are on the plane x-3y+4z=0. (Hint: Think of the equation as a homogeneous linear system.)

$$\vec{X} = y \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$$

$$G$$
 basis is $\left\{ \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \end{bmatrix} \right\}$

7. Recall that \mathbb{P}_n denotes the vectors space consisting of all polynomials of degree at most n.

Consider the linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ defined by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ -3\mathbf{p}(0) \end{bmatrix}$.

(a) Evaluate $T(\mathbf{p}_1)$ if $\mathbf{p}_1(t) = 2 + t - t^2$

$$T(\vec{p}_1) = \begin{bmatrix} 2 \\ -6 \end{bmatrix}$$

(b) Evaluate $T(\mathbf{p}_2)$ if $\mathbf{p}_2(t) = 2t$

$$T(\vec{p}_z) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(c) Evaluate $T(\mathbf{p}_3)$ if $\mathbf{p}_3(t) = 4t^2 + 2t - 3$

$$\vec{b}^{3}(0) = -3$$

$$\vec{p}_{3}(0) = -3 \qquad T(\vec{p}_{3}) = \begin{bmatrix} -3 \\ q \end{bmatrix}$$

(d) Find a vector \mathbf{u} in \mathbb{R}^2 that spans the range of T.

$$T(\vec{p}) = \vec{p}(0) \left[-3 \right]$$

$$T(\vec{p}) = \vec{p}(0) \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
 on choice is $\vec{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$

(e) Find any vector \mathbf{p} in \mathbb{P}_2 that is in the kernel of T.

Using
$$\vec{p}_z$$
 above, $T(\vec{p}_z) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$,

$$T(\bar{p}_{c}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

so one choice is
$$\vec{p} = \vec{p}_z = 2t$$