Exam 2 Math 3260 sec. 55

Spring 2020

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem | Points INSTRUCTIONS: There are 7 problems

1 worth 20 points each. Do any 5 problems (I’1l
count your best 5). No calculator use is al-
lowed, and no calculator use is needed. Use
of a textbook, notes, calculator or smart
device is strictly prohibited. Illicit use of
any additional resource will result in a
grade of zero on this exam as well as a
formal allegation of academic misconduct.
Show all of your work on the paper provided
to receive full credit.
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1. Find bases for Nul(A) and Col(A). A and the rref of A are given.
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View vectors in R™ as n x 1 matrices. For vectors u and v in R”, the matrix product u'visalx1
matrix (called the scalar product) that is usually written as a number without brackets. The matrix
product uv’ is an n x n matrix (called the outer product).

2. Consider the following vectors.

a —2 5
u=| b |, v= 41, and x= [ 9 ] (a, b, c are real numbers).
c 3

(a) Compute u’'v.
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(b) Compute uv’.
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(c) Compute the 2 x 2 matrix xx” .
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(d) Determine whether xx? is singular or nonsingular. If nonsingular, compute its inverse.
W3 (=7) = 100 - (0D = O
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3. Answer each short computational problem. Here, [, is the n X n identity matrix.

(a) Suppose A, B, and C' are n X n invertible matrices. Does the equation
Bl X+O)A =1,

have a solution X ? If so, find it.
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(b) Suppose A and B are 3 x 3 matrices with det(A) = 4 and det(B) = —3. Evaluate each of

3
@) det(B)= (3 = -¥ Gi) det(ATB)= 4= -1
L + =
(iii) det(B'A)= 3 -3 (iv) det(A"'BA)= “B™H = -3
a b c
(c) Supposedet | d e f | = —5. Evaluate each determinant.
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4. Determine the values of the parameter s for which the system of equations has a unique solution.
For those values of s use Crammer’s rule to obtain the solutions X and Y.
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5. Show that the linear transformation is invertible, and find a formula for 7-'. 7T : R? — R?
where T'(x1, x2) = (321 + bxe, 421 + 623).
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6. Find a basis for each subspace of the indicated vector space.
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(a) The set of matrices in M?*? of the form [ za 0 } .

(b) The set of vectors in R? that are on the plane z — 3y + 4z = 0. (Hint: Think of the equation
as a homogeneous linear system.)
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7. Recall that P, denotes the vectors space consisting of all polynomials of degree at most n.

Consider the linear transformation 7' : P, — R? defined by T'(p) = { _33%83 ] :

(a) Evaluate T'(p;) if p1(t) =2+t — 2

pito =2 T(g )= Kil

(b) Evaluate T'(p2) if po(t) = 2t

— O
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(c) Evaluate T'(ps) if p3(t) = 4t> +2t — 3
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(d) Find a vector u in R? that spans the range of 7.

T(P) = pw [-g] o Ao a5 AT X‘

(e) Find any vector p in P, that is in the kernel of 7.
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