Exam 3 Math 2254 sec. 001

Summer 2015

Name:	Solutions
Your signature	(required) confirms that you agree to practice academic honesty.
Signature:	

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 10 points each. No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam and may result in a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

(1) Evaluate the indefinite integral.

$$\int \frac{dx}{x^2 \sqrt{x^2 - 1}}$$

Trig. Substitution

$$x = Sec 0$$

$$dx = Sec 0 + on 0 = d0$$

$$\sqrt{x^2 - 1} = + on 0$$

$$\int \frac{dx}{x^{2} \sqrt{x^{2}-1}} = \int \frac{Secotanodo}{(Seco)^{2} tono}$$

$$= \int \frac{1}{Secodo} do$$

$$= \int Corodo$$

$$= Sinodo + C$$

$$= \sqrt{x^{2}-1} + C$$

(2) Determine if each sequence is convergent or divergent. If convergent, find its limit.

$$(a) \quad s_n = \frac{2n-1}{n+3}$$

$$= \lim_{N \to \infty} \frac{2 - \frac{1}{N}}{1 + 3M} = \frac{2 - 0}{1 + 0} = 2$$

(b)
$$a_n = \tan\left(\frac{2}{n^2}\right)$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \tan \left(\frac{z}{n^2}\right) = \tan(0) = 0$$

(3) Determine if the series is convergent or divergent. Justify your conclusion.

$$\sum_{n=1}^{\infty} \frac{2n-1}{n+3}$$

Since
$$\lim_{n\to\infty} \frac{2n-1}{n+3} = 2$$
 from

(4) Determine if the improper integral is convergent or divergent. If convergent, find its value.

$$\int_{0}^{8} \frac{dx}{\sqrt[3]{x}} = \lim_{t \to 0+} \int_{t}^{8} x^{-1/3} dx$$

$$= \lim_{t \to 0+} \frac{x^{2/3}}{\sqrt[3]{3}} \Big|_{t}^{8}$$

$$= \lim_{t \to 0+} \left(\frac{3}{2} (8)^{3} - \frac{3}{2} (t)^{3} \right)$$

$$= \lim_{t \to 0+} \left(\frac{3}{2} (8)^{3} - \frac{3}{2} (t)^{3} \right)$$

$$= \frac{3}{2} \cdot 4 - 0 = 6$$
Ut's convergent

(5) Determine if the geometric series is convergent or divergent. If convergent, find its sum.

$$\sum_{n=0}^{\infty} \frac{3^{n+1}}{2^{2n-1}} = \sum_{n=0}^{\infty} \frac{3 \cdot 3^{n}}{2^{-1} \cdot 2^{2n}} = \sum_{n=0}^{\infty} 6 \left(\frac{3}{4}\right)^{n}$$

$$= \frac{6}{1 - \frac{3}{4}}$$

$$= \frac{6}{1 - \frac{3}{4}} \cdot \frac{4}{4} = \frac{24}{4 - 3} = 24$$

$$= 24$$

(6) Determine if the series is absolutely convergent, conditionally convergent or divergent. Clearly justify your conclusion.

$$\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{2m}$$
 Alt. Serves Test an= $\frac{1}{2m}$

- i) lin an= lin 1 = 0
- (i) $a_{m+1} = \frac{1}{z(m+1)} = \frac{1}{zm+2} < \frac{1}{zm} = a_m$

Both conditions hold. Hence the

series converges by the alternating

Now, we consider
$$\sum_{m=1}^{\infty} \left| \frac{(-1)^{m+1}}{2m} \right| = \sum_{m=1}^{\infty} \frac{1}{2m}$$

This is $\frac{1}{2}\sum_{m=1}^{\infty}\frac{1}{m}$, $\frac{1}{2}$ times the

divergent harmonic somes.

The Seives
$$\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{2m}$$
 is

conditionally convergent.

(7) Determine if the series is convergent or divergent.

$$\sum_{k=1}^{\infty} \frac{3^k}{5k}$$
 Using the ratio test:

$$\lim_{k\to\infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k\to\infty} \left| \frac{3^{k+1}}{5(k+1)} \cdot \frac{5k}{3^k} \right|$$

$$= \lim_{k \to \infty} \left| \frac{3 \cdot 3^k}{8(k+1)} \cdot \frac{5k}{3^k} \right|$$

$$\frac{3k}{k+n} \cdot \frac{\frac{1}{k}}{k+1}$$

$$= \lim_{k \to \infty} \frac{3}{1 + \frac{1}{k}} = 3$$

Since 3>1, the series divorges.

(8) Evaluate the indefinite integral. (Hint: The integrand is an **improper** rational function.)

$$\int \frac{x^3 - x^2 + x + 1}{x(x-1)} \, dx$$

Long division:

$$\begin{array}{c}
x \\
2-x \overline{\smash)x^3-x^2+x+1} \\
-(\underline{x^3-x^2}) \\
0+x+1
\end{array}$$

$$\frac{x^3 - x^2 + x + 1}{x(x - 1)} = x + \frac{x + 1}{x(x - 1)}$$

partial fractions:
$$\frac{X+1}{X(X-1)} = \frac{A}{X} + \frac{B}{X-1} \Rightarrow$$

$$\int \frac{x(x-1)}{x_3-x_5+x+1} \, qx = \int \left(x-\frac{x}{1}+\frac{x-1}{5}\right) qx$$

$$= \frac{x^2}{2} - 2n(x) + 2\ln(x - 1) + C$$

(9) Determine the form of the partial fraction decomposition of the following rational function. **Note:** It is \underline{NOT} necessary to find any coefficients A, B, etc.

(a)
$$\frac{x+1}{(x^2+1)(x-4)} = \frac{\triangle \times + \triangle}{\times^2 + 1} + \frac{\triangle}{\times - \vee}$$

(b)
$$\frac{1}{(x+1)^2(x-2)^3} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2} + \frac{D}{(x-2)^2} + \frac{E}{(x-2)^3}$$

- (10) For each integral or series, choose the one corresponding statement that is true.
- (a) The integral $\int_0^1 \frac{1}{x^2} dx$
- (i) is equal to $\ln(x^2) + C$.
- (ii) is improper but must converge because the x is squared.
- (iii) is improper because it wears white socks with black shoes.
- (iv) is improper because the integrand is not continuous on [0,1].
- (b) To evaluate the integral $\int \frac{x^3}{x^2-1} dx$
- (i) do a partial fraction decomposition on $\frac{x^3}{x^2-1}$, then integrate. (ii) use a *u*-substitution with $u=x^2-1$.
- (iii) do long division followed by a partial fraction decomposition on the proper rational part, then integrate.
- (iv) use a trigonometric substitution with $x = \tan \theta$.
- (c) Convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^3 + 2n 1}$
- (i) can be determined by comparison to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$.
- (ii) can be determined by using the alternating series test.
- (iii) can be determined by direct comparison to the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n}$.
- (iv) can be determined by the divergence test.
- (d) The series of positive terms $\sum_{n=1}^{\infty} a_n$
- (i) must be divergent if $\lim_{n\to\infty} a_n = 0$.
- (ii) must be convergent if $a_n \leq \frac{1}{n^3}$ for each n.
- $\overline{\text{(iii)}}$ is a geometric series if $a_n = r^2$ for some real number r.
- (iv) is a convergent series if the sequence $\{a_n\}$ is a convergent sequence.