Exam 3 Math 2254 sec. 001

Summer 2015

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 10 points each. No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam and may result in a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Evaluate the indefinite integral.

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}-1}} \quad \text { Trig. Substitution }
$$

$$
\begin{aligned}
& x=\sec \theta \\
& d x=\sec \theta \tan \theta d \theta \\
& \sqrt{x^{2}-1}=\tan \theta \\
& \int \frac{d x}{x^{2} \sqrt{x^{2}-1}}=\int \frac{\sec \theta \tan \theta d \theta}{(\sec \theta)^{2} \tan \theta} \\
&=\int \frac{1}{\sec \theta} d \theta \\
&=\int \frac{\cos \theta}{} d \theta \\
&=\sin \theta+C \\
&=\frac{\sqrt{x^{2}-1}}{x}
\end{aligned}
$$

(2) Determine if each sequence is convergent or divergent. If convergent, find its limit.
(a) $s_{n}=\frac{2 n-1}{n+3}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s_{n} & =\lim _{n \rightarrow \infty} \frac{2 n-1}{n+3} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2-\frac{1}{n}}{1+3)_{n}}=\frac{2-0}{1+0}=2
\end{aligned}
$$

(b) $a_{n}=\tan \left(\frac{2}{n^{2}}\right)$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \tan \left(\frac{2}{n^{2}}\right)=\tan (0)=0
$$

Note $f(x)=\tan x$ is continuous C 0
(3) Determine if the series is convergent or divergent. Justify your conclusion.

$$
\sum_{n=1}^{\infty} \frac{2 n-1}{n+3}
$$

$$
\text { Since } \lim _{n \rightarrow \infty} \frac{2 n-1}{n+3}=2 \text { from }
$$

$$
\text { problem } z a, \text { the series }
$$

diverges bo the divergence
test.
(4) Determine if the improper integral is convergent or divergent. If convergent, find its value.

$$
\begin{aligned}
\int_{0}^{8} \frac{d x}{\sqrt[3]{x}} & =\lim _{t \rightarrow 0^{+}} \int_{t}^{8} x^{-1 / 3} d x \\
& =\left.\lim _{t \rightarrow 0^{+}} \frac{x^{2 / 3}}{2 / 3}\right|_{t} ^{8} \\
& =\lim _{t \rightarrow 0^{+}}\left[\frac{3}{2}(8)^{2 / 3}-\frac{3}{2}(t)^{2 / 3}\right] \\
& =\frac{3}{2} \cdot 4-0=6
\end{aligned}
$$

Lt's convergent.
(5) Determine if the geometric series is convergent or divergent. If convergent, find its sum.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{3^{n+1}}{2^{2 n-1}}=\sum_{n=0}^{\infty} \frac{3 \cdot 3^{n}}{2^{-1} \cdot 2^{2 n}}=\sum_{n=0}^{\infty} 6\left(\frac{3}{4}\right)^{n} \\
& r=\frac{3}{4} \\
& \text { So }|r|<1 \\
& \text { The series } \\
& \text { converges. } \\
& a=6 \\
& =\frac{6}{1-3 / 4} \cdot \frac{4}{4}=\frac{24}{4-3}=24
\end{aligned}
$$

(6) Determine if the series is absolutely convergent, conditionally convergent or divergent. Clearly justify your conclusion.

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{2 m} \text { Alt.senies Test } a_{m}=\frac{1}{2 m}
$$

i) $\lim _{m \rightarrow \infty} a_{m}=\lim _{m \rightarrow \infty} \frac{1}{2 m}=0$
(i) $a_{m+1}=\frac{1}{2(m+1)}=\frac{1}{2 m+2}<\frac{1}{2 m}=a_{m}$

Both condition hold. Hence the series converge by the alternating suits teat.

Now, we consider $\sum_{m=1}^{\infty}\left|\frac{(-1)^{m+1}}{2 m}\right|=\sum_{m=1}^{\infty} \frac{1}{2 m}$
This is $\frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{m}$, $\frac{1}{2}$ times the divergent harmonic series.

The series $\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{2 m}$ is

convergent
(7) Determine if the series is convergent or divergent.
$\sum_{k=1}^{\infty} \frac{3^{k}}{5 k}$ Using the ratio test:

$$
\left.\begin{array}{rl}
\lim _{k \rightarrow \infty} & \left|\frac{a_{k+1}}{a_{k}}\right|
\end{array}\right)=\lim _{k \rightarrow \infty}\left|\frac{3^{k+1}}{5(k+1)} \cdot \frac{5 k}{3^{k}}\right|
$$

Since $3>1$, the series diverges.
(8) Evaluate the indefinite integral. (Hint: The integrand is an improper rational function.)

$$
\int \frac{x^{3}-x^{2}+x+1}{x(x-1)} d x
$$

$$
\begin{aligned}
& \text { Long division: } \quad x \\
& \quad \begin{aligned}
x^{2}-x & \left.\frac{\left(x^{3}-x^{2}+x+1\right.}{0}\right) \\
& \frac{\left(x^{2}+x+1\right.}{}
\end{aligned},
\end{aligned}
$$

so $\frac{x^{3}-x^{2}+x+1}{x(x-1)}=x+\frac{x+1}{x(x-1)}$
paid fractions: $\quad \frac{x+1}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1} \Rightarrow$

$$
\begin{array}{rl}
\Rightarrow & x+1=A(x-1)+B x \\
x=0 & 1=A(-1) \Rightarrow A=-1 \\
x=1 & 2=B(1) \Rightarrow B=2
\end{array}
$$

$$
\begin{array}{r}
\int \frac{x^{3}-x^{2}+x+1}{x(x-1)} d x=\int\left(x-\frac{1}{x}+\frac{2}{x-1}\right) d x \\
=\frac{x^{2}}{2}-\ln |x|+2 \ln |x-1|+C
\end{array}
$$

(9) Determine the form of the partial fraction decomposition of the following rational function. Note: It is NOT necessary to find any coefficients A, B, etc.
(a) $\frac{x+1}{\left(x^{2}+1\right)(x-4)}=\frac{A x+\beta}{x^{2}+1}+\frac{C}{x-4}$
(b) $\frac{1}{(x+1)^{2}(x-2)^{3}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}}+\frac{E}{(x-2)^{3}}$
(10) For each integral or series, choose the one corresponding statement that is true.
(a) The integral $\int_{0}^{1} \frac{1}{x^{2}} d x$
(i) is equal to $\ln \left(x^{2}\right)+C$.
(ii) is improper but must converge because the x is squared.
(iii) is improper because it wears white socks with black shoes.
(iv) is improper because the integrand is not continuous on $[0,1]$.
(b) To evaluate the integral $\int \frac{x^{3}}{x^{2}-1} d x$
(i) do a partial fraction decomposition on $\frac{x^{3}}{x^{2}-1}$, then integrate.
(ii) use a u-substitution with $u=x^{2}-1$.
(iiii) do long division followed by a partial fraction decomposition on the proper rational part, then integrate.
(iv) use a trigonometric substitution with $x=\tan \theta$.
(c) Convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{3}+2 n-1}$
(ii) an be determined by comparison to the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{5 / 2}}$.
(ii) can be determined by using the alternating series test.
(iii) can be determined by direct comparison to the p-series $\sum_{n=1}^{\infty} \frac{1}{n}$.
(iv) can be determined by the divergence test.
(d) The series of positive terms $\sum_{n=1}^{\infty} a_{n}$
(i) must be divergent if $\lim _{n \rightarrow \infty} a_{n}=0$.
(ii) must be convergent if $a_{n} \leq \frac{1}{n^{3}}$ for each n.
(iii) is a geometric series if $a_{n}=r^{2}$ for some real number r.
(iv) is a convergent series if the sequence $\left\{a_{n}\right\}$ is a convergent sequence.

