Exam 3 Math 2306 sec. 51

Fall 2015

Name:

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet (8.5 " $\times 11$ ") of your own prepared notes/formulas and the provided table of Laplace transforms.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Find the particular solution of the nonhomogeneous equation for which a fundamental solution set to the associated homogeneous equation is provided.

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=2+\frac{2}{x^{2}}, \quad y_{1}=x, \quad y_{2}=\frac{1}{x}
$$

Variation of Parameters

$$
g(x)=2+\frac{2}{x^{2}}, \quad w=\left|\begin{array}{cc}
x & \frac{1}{x} \\
1 & \frac{-1}{x^{2}}
\end{array}\right|=\frac{-1}{x}-\frac{1}{x}=\frac{-2}{x}
$$

$y_{p}=u_{1} y_{1}+u_{2} y_{2}$ where

$$
\begin{aligned}
u_{1}= & \int \frac{-y_{2} g}{w} d x=\int \frac{-\frac{1}{x}\left(2+\frac{2}{x^{2}}\right)}{-21 x} d x \\
& =\frac{1}{2} \int\left(2+\frac{2}{x^{2}}\right) d x=\int\left(1+\frac{1}{x^{2}}\right) d x=x-\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& u_{2}=\int \frac{y \cdot \delta}{w} d x=\int \frac{x\left(2+\frac{2}{x^{2}}\right)}{-2 / x} d x \\
&=\frac{-1}{2} \int x^{2}\left(2+\frac{2}{x^{2}}\right) d x=-\int\left(x^{2}+1\right) d x=\frac{-x^{3}}{3}-x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =\left(x-\frac{1}{x}\right) x-\left(\frac{x^{3}}{3}+x\right) \cdot \frac{1}{x} \\
& =x^{2}-1-\frac{1}{3} x^{2}-1=\frac{2}{3} x^{2}-2
\end{aligned}
$$

$$
y_{p}=\frac{2}{3} x^{2}-2
$$

(2) A 64 lb weight is attached to a spring whose spring constant is $8 \mathrm{lb} / \mathrm{ft}$. The system is undamped and driven by an external force of $F(t)=2 \sin t$. The mass is released from equilibrium with an initial upward velocity of $8 \mathrm{in} / \mathrm{sec}(2 / 3 \mathrm{ft} / \mathrm{sec})$. Find the equation of motion. (Take the acceleration due to gravity $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)

$$
\begin{aligned}
& \text { mass } m=\frac{641 b}{32 \frac{f t}{\sec ^{2}}}=2 \operatorname{sing} s \quad, k=8 \frac{1 b}{f t} \\
& m x^{\prime \prime}+k x=F(t) \Rightarrow 2 x^{\prime \prime}+8 x=2 \sin t \\
& x^{\prime \prime}+4 x=\sin t \quad, x(0)=0 \quad x^{\prime}(0)=\frac{-2}{3} \\
& x_{c}=c_{1} \cos 2 t+c_{2} \sin 2 t
\end{aligned}
$$

Using the method of undetermined coefficients, assume

$$
\begin{aligned}
& x_{p}=A \sin t+B \cos t \\
& x_{p}=A \cos t-B \sin t \\
& x_{p}^{\prime \prime}=-A \sin t-B \cos t=-x_{p}
\end{aligned}
$$

Then

$$
\begin{aligned}
& x_{p}^{\prime \prime}+4 x_{p}=\sin t \\
& 3 x_{p}=\sin t \Rightarrow 3 A \sin t+3 B \cos t=\sin t \\
& A=\frac{1}{3}, \quad B=0 \\
& x=c_{1} \cos 2 t+c_{2} \sin 2 t+\frac{1}{3} \sin t \\
& x^{\prime}(t)=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t+\frac{1}{3} \cos t \\
& x(0)=c_{1}=0 \quad x^{\prime}(0)=2 C_{2}+\frac{1}{3}=\frac{-2}{3} \Rightarrow 2 C_{2}=-1 \quad c_{2}=\frac{-1}{2}
\end{aligned}
$$

The equation of motion is $x(t)=\frac{-1}{2} \sin 2 t+\frac{1}{3} \sin t$.
(3) Solve the initial value problem using the method of Laplace transforms.

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=6 e^{t}, \quad y(0)=1, \quad y^{\prime}(0)=-2 \\
& \mathcal{L}\left\{y^{\prime \prime}+3 y^{\prime}+2 y\right\}=\mathcal{L}\left\{6 e^{t}\right\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=6 \mathcal{L}\left\{e^{+}\right\} \\
& \delta^{2} Y(s)-s y(0)-y^{\prime}(0)+3(s Y(s)-y(0))+2 Y(s)=\frac{6}{s-1} \\
& \left(s^{2}+3 s+2\right) \Psi(s)-s+2-3=\frac{6}{s-1} \\
& (s+1)(s+2) Y(s)=\frac{6}{s-1}+s+1 \\
& Y(s)=\frac{6}{(s-1)(s+1)(s+2)}+\frac{s+1}{(s+1)(s+2)}=\frac{6}{(s-1)(s+1)(s+2)}+\frac{1}{s+2} \\
& \text { wm } \\
& \frac{6}{(s-1)(s+1)(s+2)}=\frac{A}{s-1}+\frac{B}{s+1}+\frac{C}{s+2} \Rightarrow \\
& 6=A(s+1)(s+2)+B(s-1)(s+2)+C(s-1)(s+1)
\end{aligned}
$$

Set

$$
\begin{array}{ll}
s=1 & 6=6 A \\
s=-1 & 6=-2 B \Rightarrow B=1 \\
s=-2 & 6=3 C \Rightarrow C=2
\end{array}
$$

$$
\begin{aligned}
& Y(s)=\frac{1}{s-1}-\frac{3}{s+1}+\frac{2}{s+2}+\frac{1}{s+2} \\
& y(t)=\mathcal{Z}^{-1}\{Y(s)\}=e^{t}-3 e^{-t}+3 e^{-2 t}
\end{aligned}
$$

(4) Use any method to evaluate the Laplace transform or inverse transform as indicated.
(a)

$$
\begin{aligned}
\mathscr{L}\left\{(t-1)^{2}\right\} & =\mathscr{L}\left\{t^{2}-2 t+1\right\} \\
& =\mathscr{L}\left\{t^{2}\right\}-2 \mathscr{L}\{t\}+\mathscr{L}\{1\} \\
& =\frac{2!}{s^{3}}-\frac{2}{s^{2}}+\frac{1}{s}
\end{aligned}
$$

(b) $\mathscr{L}^{-1}\left\{\frac{1}{s^{6}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{5!} \frac{5!}{5^{6}}\right\}=\frac{1}{5!} \mathscr{L}^{-1}\left\{\frac{5!}{5^{6}}\right\}=\frac{1}{5!} t^{5}$
(c)

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s-2}{s^{2}+4}\right\} & =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}-\frac{2}{s^{2}+4}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}-\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\} \\
& =\cos 2 t-\sin 2 t
\end{aligned}
$$

(d) $\mathscr{L}\left\{f^{\prime}(t)\right\} \quad$ given $\quad \mathscr{L}\{f(t)\}=\frac{1}{s^{3 / 2}}, \quad$ and $\quad f(0)=1$

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime}(t)\right\} & =s \mathcal{L}\{f(t)\}-f(0) \\
& =s\left(\frac{1}{s^{3 / 2}}\right)-1 \\
& =\frac{1}{s^{1 / 2}}-1
\end{aligned}
$$

(5) Use elimination to find the general solution of the system of differential equations.

$$
\left.\begin{array}{c}
\left.\begin{array}{l}
\frac{d x}{d t}+3 x+\frac{d y}{d t}=0 \\
2 x+\frac{d y}{d t}-10
\end{array}\right) \\
(D+3) x+D_{y}=0 \\
2 x+D_{y}=10
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { subtract }
\end{aligned} \quad \begin{aligned}
& (D+3) x-2 x=-10 \\
& \quad(D+1) x=-10
\end{aligned}
$$

$x^{\prime}+x=-10 \quad 1^{\text {st }}$ order linear wi integrating factor $\mu=e^{\int d t}=e^{t}$

$$
\begin{aligned}
& \left(e^{t} x\right)^{\prime}=-10 e^{t} \\
& \int\left(e^{t} x\right)^{\prime} d t=-\int 10 e^{t} d t=-10 e^{t}+C_{1} \\
& x=-10+C_{1} e^{-t}
\end{aligned}
$$

From the $2^{\text {nd }}$ equation $\frac{d y}{d t}=10-2 x=10-2\left(-10+c_{1} e^{-t}\right)$

$$
\begin{aligned}
& \frac{d y}{d t}=30-2 c_{1} e^{-t} \\
& y=\int\left(30-2 c_{1} e^{-t}\right) d t=30 t+2 c_{1} e^{-t}+c_{2}
\end{aligned}
$$

The genence solution for the system is

$$
\begin{aligned}
& x=-10+c_{1} e^{-t} \\
& y=30 t+2 c_{1} e^{-t}+c_{2}
\end{aligned}
$$

