Exam 3 Math 2306 sec. 53

Fall 2018
Name: (2 points)
Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: There are 7 problems worth 14 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formab allegation of academic masconduct. Show all of your work on the paper provided to receive full credit.
(1) Evaluate each Laplace transform.
(a) $\mathscr{L}\{(t+1)(t-3)\}=\mathscr{L}\left\{t^{2}-2 t-\overline{3}\right\}=\mathscr{L}\left\{t^{2}\right\}-2 \mathscr{L}\{t\}-3 \mathcal{L}\{1\}$

$$
=\frac{2}{s^{3}}-\frac{2}{s^{2}}-\frac{3}{s}
$$

(b) $\mathscr{L}\left\{\frac{e^{3 t}-e^{-3 t}}{2}\right\}=\frac{1}{2} \mathscr{L}\left\{e^{3+}\right\}-\frac{1}{2} \mathscr{L}\left\{e^{-3 t}\right\}=\frac{1}{2} \frac{1}{s-3}-\frac{1}{2} \frac{1}{s+3}$
(c) $\mathscr{L}\{\sin (2 t)-\cos (2 t)\}=\frac{2}{s^{2}+4}-\frac{s}{s^{2}+4}$
(2) A LC-series circuit (no resistor) with inductance of 10 henries and capacitance of $\frac{1}{10}$ farad has a dying battery attached. The implied electromotive force is $E(t)=150 e^{-2 t}$ volts. If the initial charge $q(0)=0$ and the initial current $i(0)=0$, determine the charge $q(t)$ on the capacitor for $t>0$.

$$
L q^{\prime \prime}+\frac{1}{C} q=E \Rightarrow 10 q^{\prime \prime}+\frac{1}{1 / 10} q=150 e^{-2 t}
$$

Staderd form $\quad q^{\prime \prime}+q=15 e^{-2 t} \quad q(x)=q^{\prime}(0)=0$

$$
\begin{aligned}
& q_{c}: m^{2}+1=0 \Rightarrow m= \pm i \quad q_{c}=c_{1} \cos (t)+c_{2} \sin (t) \\
& q_{p}: q_{p}=A e^{-2 t} \quad q_{p}^{\prime}=-2 A e^{-2 t} \quad q_{p}^{\prime \prime}=4 A e^{-2 t} \\
& \\
& 4 A e^{-2 t}+A e^{-2 t}=15 e^{-2 t} \Rightarrow 5 A=15, A=3
\end{aligned}
$$

So the genend solution is $q=c_{1} \cos t+c_{2} \sin t+3 e^{-2 t}$

$$
\begin{aligned}
& q^{\prime}=-c_{1} \sin t+c_{2} \cos t-6 e^{-2 t} \\
& q(0)=c_{1}+3=0 \quad c_{1}=-3 \\
& q^{\prime}(0)=c_{2}-6=0 \quad \Rightarrow \quad c_{2}=6
\end{aligned}
$$

The charge on the capacitor is

$$
q(t)=-3 \cos t+6 \sin t+3 e^{-2 t}
$$

(3) Find the general solution of each homogeneous equation.
(a) $\frac{d^{3} y}{d x^{3}}-9 \frac{d y}{d x}=0 \quad m^{3}-9 m=0 \quad m(m-B)(m+3)=0 \quad m=0, m=3$, or $m=-3$

$$
y=c_{1}+c_{2} e^{3 x}+c_{3} e^{-3 x}
$$

(b) $4 y^{\prime \prime}+4 y^{\prime}+y=0$

$$
y=c_{1} e^{\frac{-1}{2} x}+c_{2} \times e^{-\frac{1}{2} x}
$$

(4) A 2 kg mass is attached to a spring with spring constant $4 \mathrm{~N} / \mathrm{m}$. A dashpot induces damping that is 4 times the instantaneous velocity. In the absence of external driving, set up the homogeneous differential equation describing the displacement $x(t)$ of the mass. Determine if the system is over damped, under damped or critically damped. (It is NOT necessary to solve the ODE.)

$$
\begin{aligned}
& \text { to solve the ODE.) } \\
& m x^{\prime \prime}+\beta x^{\prime}+k x=0 \\
& r^{2}+2 r+2=0 \\
& r^{2}+2 r+1+1=0 \\
& (r+1)^{2}=-1 \\
& r+1= \pm i \quad \text { Complex } \\
& \text { This is the oDE }
\end{aligned} \quad \begin{aligned}
& 2 x^{\prime \prime}+4 x^{\prime}+4 x=0 \\
& r=-1 \pm i
\end{aligned} \quad \text { The system is } \begin{aligned}
& \text { under damped }
\end{aligned}
$$

(5) Find the general solution of the nonhomogeneous equation. The complementary solution is $y_{c}=c_{1} x^{2}+c_{2} x^{3}$.

$$
\begin{aligned}
& x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-x^{2} \\
& y^{\prime \prime}-\frac{4}{x} y^{\prime}+\frac{6}{x^{2}}=-1 \quad g(x)=-1 \\
& W=\left|\begin{array}{ll}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|=3 x^{4}-2 x^{4}=x^{4} \quad y_{p}=41 y_{1}+42 y_{2} \text { whence } \\
& u_{1}=\int \frac{-g y_{2}}{\omega} d x=\int \frac{-(-1) x^{3}}{x^{n}} d x=\int \frac{1}{x} d x=\ln x \\
& u_{2}=\int \frac{g y_{1}}{\omega} d x=\int \frac{-1 x^{2}}{x^{2}} d x=\int \frac{-1}{x^{2}}=\frac{1}{x} \\
& y_{p}=x^{2} \ln x+x^{3} \cdot \frac{1}{x}=x^{2} \ln x+x^{2} \\
& \text { We con lump } x^{2} \text { in with } c, x^{2} \\
& \text { The genend solution is } \\
& y=c_{1} x^{2}+c_{2} x^{3}+x^{2} \ln x
\end{aligned}
$$

(6) Consider the nonhomogeneous equation $y^{\prime \prime}+2 y^{\prime}+y=g(x)$. For each g, determine the form of the particular solution when using the method of undetermined coefficients. Do not solve for any coefficients, A, B, etc.

$$
\begin{aligned}
m^{2}+2 m+1 & =0 \Rightarrow(m+1)^{2}=0 \quad m=-1 \text { repected } \\
y_{2} & =c_{1} e^{-x}+c_{2} x e^{-x}
\end{aligned}
$$

(a) $g(x)=2 x+e^{-x}$

$$
\begin{aligned}
& y_{p_{1}}=A x+B \\
& y_{p_{2}}=C e^{-x} \cdot x^{2}
\end{aligned} \quad y_{p}=A x+B+C x^{2} e^{-x}
$$

(b) $g(x)=x \sin (\pi x)$

$$
y_{p}=(A x+B) \sin (\pi x)+(C x+D) \cos (\pi \infty)
$$

(7) Evaluate each inverse Laplace transform.
(a)

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{1}{s^{3}}+\frac{3}{s+2}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s^{3}}\right\}+3 \mathscr{L}^{-1}\left\{\frac{1}{s+2}\right\} \\
& =\frac{1}{2}: t^{2}+3 e^{-2 t}
\end{aligned}
$$

(b) $\mathscr{L}^{-1}\left\{\frac{s-1}{s^{2}+9}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}-\frac{1}{3} \mathscr{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\}$

$$
=\cos (3 t)-\frac{1}{3} \sin (3 t)
$$

(c) $\mathscr{L}^{-1}\left\{\frac{6}{s(s-2)}\right\}=-3 \mathscr{L}^{-1}\left\{\frac{1}{5}\right\}+3 \mathscr{L}^{-1}\left\{\frac{1}{s-2}\right\}=-3+3 e^{2 t}$

$$
\frac{6}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \Rightarrow \quad 6=A(s-2)+B s, \begin{aligned}
6 & =-3 \\
s & =0-2 A=6 \\
s & =2 \quad 2 B=6
\end{aligned} \Rightarrow B=3
$$

