Exam 3 Math 2306 sec. 54 Spring 2019

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Find the general solution of each homogeneous equation.
(a) $y^{\prime \prime}-25 y=0$

$$
\begin{aligned}
& y^{\prime \prime}-25 y=0 \\
& m^{2}-25=0
\end{aligned} \quad y=c_{1} e^{5 x}+c_{2} e^{-5 x}
$$

$$
\begin{aligned}
m^{2} & =25 \\
m & = \pm 5
\end{aligned}
$$

(b) $y^{\prime \prime}-4 y^{\prime}+5 y=0$

$$
\begin{gathered}
m^{2}-4 m+5=0 \\
m^{2}-4 m+4+1=0 \\
(m-2)^{2}=-1 \\
m-2= \pm i \\
m=2 \pm i
\end{gathered}
$$

2. A dying battery imparts an electromotive force $E(t)=20 e^{-t}$ to an LC-series circuit (there is no resistor). The inductance is 2 henry and the capacitance is 0.005 (ie. $\frac{1}{200}$) farads. If the initial charge on the capacitor $q(0)=0$ and the initial current $i(0)=0$, determine the charge $q(t)$ for all $t>0$.

$$
\begin{aligned}
& L=2, \quad C=\frac{1}{200}, E=20 e^{-t} \text { and } R=0 \\
& L q^{\prime \prime}+R q^{\prime}+\frac{1}{C q}=E \\
& 2 q^{\prime \prime}+200 q=20 e^{-t} \\
& \text { in standard for } \sim q^{\prime \prime}+100 q=10 e^{-t} \\
& m^{2}+100=0 \Rightarrow m= \pm 10 i
\end{aligned}
$$

$$
\text { So } f_{c}=c_{1} \cos (10 t)+c_{2} \sin (10 t)
$$

Using undetermined coefficients, set $Q_{p}=A e^{-t}$ Then $q_{p}{ }^{\prime}=-A e^{-t}, Q_{p} p^{\prime \prime}=A e^{-t}$

$$
\begin{aligned}
A e^{-t}+100 A e^{-t}=10 e^{-t} \Rightarrow 10 / A & =10 \\
A & =\frac{10}{101}
\end{aligned}
$$

$$
\text { So } f_{p}=\frac{10}{101} e^{t}
$$

$$
\begin{aligned}
& q=c_{1} \cos (10 t)+c_{2} \sin (10 t)+\frac{10}{101} e^{-t} \\
& q^{\prime}=-10 c_{1} \sin (10 t)+10 c_{2} \cos (10 t)-\frac{10}{101} e^{t} \\
& q^{\prime} 0=c_{1}+\frac{10}{101}=0 \Rightarrow c_{1}=\frac{-10}{101} \\
& q^{\prime}(0)=10 c_{2}-\frac{10}{101} \Rightarrow c_{2}=\frac{1}{10}\left(\frac{10}{101}\right)=\frac{1}{101}
\end{aligned}
$$

The charge

$$
g(t)=\frac{-10}{101} \cos (10 t)+\frac{1}{101} \sin (10 t)+\frac{10}{101} e^{-t}
$$

for $t>0$.
3. Find the general solution of the nonhomogenous equation.

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+y=\frac{9 e^{-t}}{\sqrt{t}} \quad \text { Find } y_{c}: \quad \begin{array}{c}
m^{2}+2 m+1=0 \\
(m+1)^{2}=0 \Rightarrow m=-1 \text { repeated } \\
y_{1}=e^{-t}, y_{2}=t e^{-t}
\end{array}
\end{aligned}
$$

Using variation of parameters $y_{p}=4, y_{1}+u_{z} y_{2}$ Here $\quad \partial(t)=\frac{a}{\sqrt{t}} e^{-t} \quad$ and $\quad W=\left|\begin{array}{ll}e^{-t} & t e^{-t} \\ -e^{-t} & e^{-t}-t e^{-t}\end{array}\right|$

$$
=e^{-2 t}-t e^{-2 t}+t e^{-2 t}=e^{-2 t}
$$

$$
\begin{array}{rl}
u_{1} & =\int \frac{-g y_{2}}{w} d t=\int \frac{-9}{\sqrt{t} e^{-t}\left(t e^{-t}\right)} \\
e^{-2 t} & d t=-9 \int \sqrt{t} d t \\
& =-9 \frac{t^{3 / 2}}{3 / 2}=-6 t^{3 / 2} \\
u_{2} & =\int \frac{2 y_{1}}{w} d t=\int \frac{\frac{9}{\sqrt{t}} e^{-t}\left(e^{-t}\right)}{e^{-2 t}} d t=9 t^{-1 / 2} d t=9 \frac{t^{1 / 2}}{1 / 2} \\
& =18 t^{1 / 2} \\
y_{p} & =-6 t^{3 / 2} e^{-t}+18 t^{1 / 2} t e^{-t}=12 t^{3 / 2}-t
\end{array}
$$

The solution

$$
y=c_{1} e^{-t}+c_{2} t e^{-t}+12 t^{3 / 2} e^{-t}
$$

4. Suppose you wish to use the method of undetermined coefficients to find a particular solution to the differential equation

$$
y^{\prime \prime}+y^{\prime}-12 y=g(x)
$$

For each function $g(x)$, determine the form of the particular solution. (Do not solve for any of the coefficients A, B, etc.)

$$
\text { Consider yo } \begin{aligned}
m^{2}+m-12 & =0 \\
(m+4)(m-3) & =0 \\
m & =-4 \text { or } m=3 \\
y_{c} & =c_{1} e^{-4 x}+c_{2} e^{3 x}
\end{aligned}
$$

(a) $g(x)=4 x e^{3 x}-2 \cos (2 x)$

$$
\begin{aligned}
& S_{1} S_{2} \\
& \operatorname{oy}_{p_{1}}=(A x+B) e^{3 x} \cdot x \\
&=\left(A x^{2}+B x\right) e^{3 x} \\
& y_{p_{2}}=C \cos (2 x)+D \sin (2 x)
\end{aligned}
$$

(b) $g(x)=4 x e^{x} \cos (\pi x)$

$$
y_{p}=(A x+B) e^{x} \cos (\pi x)+(Q x+D) e^{x} \sin (\pi x)
$$

5. Evaluate each Laplace transform or inverse Laplace transform.
(a)

$$
\begin{aligned}
\mathscr{L}\left\{3 t^{4}-2 \sin (6 t)\right\} & =3 \mathcal{L}\left\{t^{4}\right\}-2 \mathcal{L}\{\sin (6 t)\} \\
& =3 \frac{4!}{s^{5}}-2 \frac{6}{s^{2}+36}=\frac{72}{s^{5}}-\frac{12}{s^{2}+36}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathscr{L}\left\{\left(1-e^{-t}\right)^{2}\right\} & =\mathcal{L}\left\{1-2 e^{-t}+e^{-2 t}\right\} \\
& =\frac{1}{S}-\frac{2}{\mathrm{~s}+1}+\frac{1}{\mathrm{~s}+2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{1}{s^{3}}+\frac{3}{s^{2}+25}\right\} & =\mathscr{L}^{-1}\left\{\frac{1}{2!} \frac{2!}{s^{3}}\right\}+3 \mathscr{L}^{-1}\left\{\frac{1}{s} \frac{5}{s^{2}+s^{2}}\right\} \\
& =\frac{1}{2} t^{2}+\frac{3}{5} \sin (s t)
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{-2 s}{(s-1)(s-3)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\} \\
&=e^{t}-3 e^{3 t} \\
& \frac{-2 s}{(s-1)(s-3)}=\frac{A}{s-1}+\frac{B}{s-3} \Rightarrow \quad \begin{array}{l}
-2 s=A(s-3)+B(s-1) \\
s=1 \quad-2=-2 A \quad A=1 \\
s=3 \quad-6=2 B \quad B=-3
\end{array}
\end{aligned}
$$

