Exam 3 Math 2306 sec. 58

Spring 2016

Name:	Solutions	
Your signature (requi	ired) confirms that you agree to practice academic hor	nesty.
Signature:		

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet $(8.5" \times 11")$ of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

- (1) For each homogeneous equation, either write out the characteristic equation or if one does not exists briefly state why.
- (a) $x^2y''+2xy'-3y=0$ None exists. The equation is not constant (setficient.

(b) $y^{(4)} + 3y''' - 2y'' + 2y = 0$ $y^{(4)} + 3y''' - 2y'' + 2y = 0$

(d) 3y'' + 2yy' + y = 0

None exists. The equation is not linear due to the yy' term.

- (2) Find the general solution of each homogeneous equation.
- (a) y'' 2y' 8y = 0

$$m^2 - 2m - 8 = 0$$

 $(m - 4)(m+2) = 0 \Rightarrow m= 4 \text{ on } m= -2$

(b) y'' - 6y' + 10y = 0

$$m^2 - 6m + 10 = 0$$

- $m^2 6m + 10 = 0$ $m^2 6m + 9 + 1 = 0$ $(m-3)^2 = -1$ m=3 = 1 L=3, B=1
- y= c, e cosx + cz e sinx

- (c) y'' + 8y' + 16y = 0 $m^2 + 8m + 16 = 0$ $(m+4)^2 = 0 \Rightarrow m = -4$

 $(d) \quad y'' - 4y = 0$

$$m^2 - 4 = 0 \Rightarrow m = {}^{\pm} 2$$

(3) For each nonhomogeneous equation, determine the **form** of the particular solution when using the method of undetermined coefficients. DO NOT bother trying to find any of the coefficients A, B, etc.

(a)
$$y''-2y'-8y = xe^{-2x}+1$$
 $y_c = c$, $e^x + c_2 e^x + c_3 e^{2x}$ $y_{p_1} = (Ax+B)e^{2x}$ $y_{p_2} = (Ax+B)xe^{2x}$ $y_{p_3} = (Ax+B)xe^{2x}$ $y_{p_4} = (Ax+B)xe^{2x}$ $y_{p_5} = (Ax+B)xe^{2x}$ $y_{p_7} = (Ax+B)xe^{2x}$ (b) $y''-6y'+10y = e^{3x}\cos x$ $y_c = c$, $e^x\cos x + c$,

(c)
$$y''+8y'+16y = 4x^2+16e^{-4x}$$

$$3c = C, e + C_2 \times e$$

$$3(x) = 4x^2 \qquad 3_{p_1} = A \times^2 + B \times + C$$

$$3z(x) = 16e^{4x} \qquad 3p_2 = De^{4x} \qquad 4his wort work$$

$$3p_2 = D \times^2 e^{4x}$$

$$3p_2 = A \times^2 + B \times + C + D \times^2 e$$

(4) Solve the initial value problem.

$$y'' + y' = 12e^{2x}$$
, $y(0) = 3$, $y'(0) = 5$

Find
$$g_c: m^2 + m = 0 \Rightarrow m(m+1) = 0 \qquad m = 0 \text{ or } m = -1$$

$$g_c = C_1 + C_2 e$$

For
$$y_{p}$$
: Try $y_{p} = Ae^{2x}$ $y_{p}^{"} + y_{p}^{"} = 12e^{2x}$
 $y_{p}^{"} = 2Ae^{2x}$ $y_{A}e^{2x} + 2Ae^{2x} = 12e^{2x}$
 $y_{p}^{"} = 4Ae^{2x}$ $y_{A}e^{2x} + 2Ae^{2x} = 12e^{2x}$

$$y(0) = C_1 + C_2 + 2 = 3$$

$$y'(0) = -C_2 + 4 = 5$$

$$C_1 + C_2 = 1$$

$$-C_2 = 1 \implies C_3 = -1$$

$$C_1 - 1 = 1 \implies C_1 = 2$$

(5) Find the general solution of the nonhomogeneous equation.

and the general solution of the nonhomogeneous equation.

$$y'' - 3y' + 2y = 2x^{2}$$

Find $\exists c: m^{2} - 3m + 2 = 0 \quad (m - 2)(m - 1) = 0$

$$m = 2 \text{ or } m = 1$$

$$\exists c = C, c + C_{2} e$$

For $\exists p + r m$

$$\exists p = A \times^{2} + \beta \times + C$$

$$\exists p' = 2A \times + \beta$$

$$\exists p'' = 2A$$

$$\exists p'' - 3m' + 2m = 2x^{2}$$

$$2A - 3(2A \times + \beta) + 2(Ax^{2} + \beta \times + C) = 2x^{2}$$

$$2A \times^{2} + (-6A + 2\beta) \times + (2A - 3b + 2C) = 2x^{2}$$

$$2A = 2 \implies A = 1$$

$$-6A+2B=0 \implies B=3A=3$$

 $2A-3B+2(=0 \implies 2C=3B-2A=9-2=7$
 $C=7/2$