Exam 3 Math 2306 sec. 59

Spring 2016

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

| Problem |
| :---: | Points,\(~\left(\begin{array}{c|}\hline 1

\hline 2

\hline 3

\hline 4

\hline 5

\hline\end{array}\right.\)

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet (8.5 " $\times 11^{\prime \prime}$) of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) For each homogeneous equation, either write out the characteristic equation or if one does not exists briefly state why.
(a) $\frac{d^{5} y}{d x^{5}}-3 y=0 \quad m^{5}-3=0$
(b) $y^{(4)}+2 y y^{\prime \prime}+3 y=0$

None exists. The equation is nonlinear dive to the $2 y y^{\prime \prime}$ term.
(c) $x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$

$$
\begin{aligned}
& \text { None exists, The equation is not } \\
& \text { constant coefficient. }
\end{aligned}
$$

(d) $y^{(3)}+4 y^{\prime \prime}-7 y^{\prime}=0$

$$
m^{3}+4 m^{2}-7 m=0
$$

(2) Find the general solution of each homogeneous equation.
(a) $y^{\prime \prime}-9 y=0 \quad m^{2}-9=0 \Rightarrow m= \pm 3$

$$
y=c_{1} e^{3 x}+c_{2} e^{-3 x}
$$

(b) $y^{\prime \prime}-10 y^{\prime}+25 y=0 \quad m^{2}-10 m+25=0 \Rightarrow(m-5)^{2}=0$

$$
m=5 \text { repeated }
$$

$$
y=c_{1} e^{5 x}+c_{2} x e^{5 x}
$$

$$
\begin{array}{r}
\text { (c) } y^{\prime \prime}+6 y^{\prime}+10 y=0 \quad m^{2}+6 m+10=0 \Rightarrow m^{2}+6 m+9+1=0 \\
(m+3)^{2}=-1 \\
m=-3 \pm i \\
y=c_{1} e^{-3 x} \cos x+c_{2} e^{-3 x} \sin x
\end{array}
$$

(d) $y^{\prime \prime}-2 y^{\prime}-15 y=0$

$$
\begin{aligned}
& (m-5)(m+3)=0 \\
& m=5 \text { or } m=-3
\end{aligned}
$$

$$
y=c_{1} e^{5 x}+c_{2} e^{-3 x}
$$

(3) For each nonhomogeneous equation, determine the form of the particular solution when using the method of undetermined coefficients. DO NOT bother trying to find any of the coefficients A, B, etc.
(a)

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}-15 y=x e^{-3 x}+2 \quad y_{c}=c_{1} e^{5 x}+c_{2} e^{-3 x} \quad y_{p_{1}}=(A x+B) e^{-3 x} \text { this wont woolen } \\
g_{1}(x)=x e^{-3 x} \\
y_{p_{1}}=(A x+B) x e^{-3 x} \\
g_{2}(x)=2 \\
y_{p_{2}}=C
\end{gathered}
$$

(b) $y^{\prime \prime}+6 y^{\prime}+10 y=e^{-3 x} \sin x$

$$
y c=c_{1} e^{-3 x} \cos x+c_{2} e^{-3 x} \sin x \quad 2(c)
$$

$$
y_{p}=\left(A e^{-3 x} \sin x+B e^{-3 x} \cos x\right) x
$$

$$
y_{\rho}=A \times e^{-3 x} \sin x+B x e^{-3 x} \cos x
$$

(c)

$$
\begin{aligned}
& y^{\prime \prime}-10 y^{\prime}+25 y=15 e^{5 x-3 x^{2}} \quad y_{c}=c_{1} e^{5 x}+c_{2} x e^{5 x} \quad 2(b) \\
& g_{1}(x)=15 e^{5 x}=A e^{5 x} \quad \text { this wont won } \\
& y_{p_{1}}=A x^{2} e^{5 x} \\
& y_{2}(x)=-3 x^{2}=B x^{2}+C x+D
\end{aligned}
$$

(4) Find the general solution of the nonhomogeneous equation.

$$
y^{\prime \prime}-2 y^{\prime}=5 \sin x
$$

Find y_{c} : $m^{2}-2 m=0 \quad m(m-2)=0 \quad m=0$ or $m=2$

$$
y_{c}=c_{1}+c_{2} e^{2 x}
$$

For ye, true $y_{p}=A \sin x+B \cos x$

$$
\begin{aligned}
& y_{p}^{\prime}=A \cos x-B \sin x \\
& y_{p}^{\prime \prime}=-A \sin x-B \cos x \\
& y_{p}^{\prime \prime}-2 y_{p}^{\prime}= 5 \sin x \\
&-A \sin x-B \cos x-2 A \cos x+2 B \sin x=\sin x \\
&(-A+2 B) \sin x+(-2 A-B) \cos x=5 \sin x \\
&-A+2 B=5 \\
&-2 A-B=0 \Rightarrow B=-2 A \\
&-A+2(-2 A)=5 \Rightarrow-5 A=5 \quad A=-1 \\
& \Rightarrow \quad B=-2(-1)=2
\end{aligned}
$$

so $y_{p}=-\sin x+2 \cos x$

The serena solution

$$
y=c_{1}+c_{2} e^{2 x}-\sin x+2 \cos x
$$

(5) Solve the initial value problem.

$$
y^{\prime \prime}-y=2 x^{2}, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Find $y_{c}: \quad m^{2}-1=0 \quad \Rightarrow \quad m= \pm 1 \quad y_{c}=c_{1} e^{x}+c_{2} e^{-x}$

For y_{p}, try y $y_{p}=A x^{2}+B x+C$

$$
\begin{aligned}
& b \rho^{\prime}=2 A x+B \\
& y_{\varphi}{ }^{\prime \prime}=2 A \\
& y_{p}^{\prime \prime}-y_{p}=2 x^{2} \\
& 2 A-\left(A x^{2}+B x+C\right)=2 x^{2} \\
& -A x^{2}-B x+2 A-C=2 x^{2} \\
& -A=2 \Rightarrow A=-2 \\
& -\beta=0 \quad B=0 \\
& 2 A-C=0 \quad C=2 A=-4 \\
& y_{p}=-2 x^{2}-4 \\
& y=c_{1} e^{x}+c_{2} e^{-x}-2 x^{2}-4 \quad y(0)=c_{1}+c_{2}-4=0 \\
& y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}-4 x \quad y^{\prime}(0)=c_{1}-c_{2}=0 \\
& c_{2}=c_{1} \\
& 2 c_{1}=4 \quad c_{1}=2
\end{aligned}
$$

So the solution is

$$
y=2 e^{x}+2 e^{-x}-2 x^{2}-4
$$

