Exam 4 Math 2254H sec. 015H
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INSTRUCTIONS: There are 7
problems worth 14 points each. No
use of notes, books, or calculator
is allowed. Illicit use of notes, a
book, calculator, or any smart de-
vice will result in a grade of zero
on this exam and may result in a
formal allegation of academic mis-
conduct. Show all of your work on
the paper provided to receive full
credit.



(1) Determine if the given series is absolutely convergent, conditionally convergent or diver-
gent.
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(2) Although the following series is not truly a p-series, it is comparable to a p-series. Find
the value of p for the p-series which can be used for a comparison test. Based on this value
of p, is the given series expected to converge or to diverge?
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(3) Determine if the series is convergent or divergent.
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(4) Use the ratio test to show that the given series is absolutely convergent.
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(5) Based on your results in problem (4), find the radius of convergence of the power series.
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(6) Select the true statement for each of (a), (b), and (c)
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i) is geometric with common ratio r = 2.
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ii) is a divergent p-series with p = %

s geometric with common ratio r = 3—?
25

iv) is geometric with first term a = % and common ratio r = .
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(b) The series Z(—l)"bn
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i) is an alternating series for any sequence of numbers {b,}. °ow' & a0 N~

ii) is convergent if lim,, o, b, = 0.
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iv) is the alternating harmonic series.
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(c) The series Z \/j
n

n=1

i) is a p-series with p = 5.

)
ii) is convergent by the ratio test.

iii) is a geometric series with first term a = 4 and common ratio r = ‘7{—?

@s a convergent p-series.



(7) Find a power series representation centered at zero for the function f and identify its
radius of convergence. (Remember that tan™'(0) = 0.)
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