Exam 4 Math 2306 sec. 53

Fall 2018
Name: (4 points) Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems worth 16 points each. You may use one sheet $\left(8.5^{\prime \prime} \times 11^{\prime \prime}\right)$ of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formab allegation of academic masconduct. Show all of your work on the paper provided to receive full credit.
(1) Evaluate each Laplace transform.
(a) $\mathscr{L}\left\{e^{-\pi t} \cos (2 t)\right\}=\frac{s+\pi}{(s+\pi)^{2}+4}$
(b) $\mathscr{L}\left\{\left(1+e^{2 t}\right) \mathscr{U}(t-3)\right\}=e^{-3 s} \mathscr{L}\left\{\left(1+e^{2(t+3)}\right\}\right.$

$$
=e^{-3 s}\left(\frac{1}{s}+\frac{e^{6}}{s-2}\right)
$$

(c) Given that: $\mathscr{L}\{t \sin t\}=\frac{2 s}{\left(s^{2}+1\right)^{2}}, \quad$ evaluate $\mathscr{L}\left\{t e^{-t} \sin t\right\}=\frac{2(s+1)}{\left((s+1)^{2}+1\right)^{2}}$
(2) Evaluate each inverse Laplace transform.
(a) $\mathscr{L}^{-1}\left\{\frac{e^{-6 s}}{s^{4}}\right\}=\frac{1}{3!}(t-6)^{3} u(t-6)$

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{4}}\right\}=\frac{1}{3!} t^{3}
$$

(b)

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s}{s^{2}-4 s+8}\right\}=\mathcal{L}^{-1}\left\{\frac{s-2+2}{(s-2)^{2}+2^{2}}\right\}=\mathcal{L}^{-1}\left\{\frac{s-2}{(s-2)^{2}+2^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{2}{(s-2)^{2}+2^{2}}\right\} \\
& s^{2}-4 s+\theta=s^{2}-4 s+4+4 \\
&=(s-2)^{2}+2^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{e^{-\frac{\pi}{3} s}}{s^{2}+9}\right\}=\frac{1}{3} \sin \left(3\left(t-\frac{\pi}{3}\right)\right) u(t-\pi / 3) \\
& \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}=\frac{1}{3} \sin (3 t)
\end{aligned}
$$

(3) Use the method of Laplace transforms to solve the first order initial value problem.

$$
\begin{aligned}
& \frac{d y}{d x}-2 y=6, \quad y(0)=3 \quad \mathcal{L}\left\{y^{\prime}-2 y\right\}=\mathcal{L}\{6\} \quad \text { Lat } \quad Y=\mathcal{L}\{y\} \\
& s Y_{(s)}-y(0)-2 Y_{(s)}=\frac{6}{5} \\
& (s-2) Y(s)=\frac{6}{s}+3 \Rightarrow Y(s)=\frac{6}{s(s-2)}+\frac{3}{s-2} \\
& \frac{6}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \\
& Y(s)=\frac{-3}{s}+\frac{3}{s-2}+\frac{3}{s-2} \\
& 6=A(s-2)+B s \\
& S=0 \quad 6=-2 A \quad A=-3 \\
& =\frac{-3}{s}+\frac{6}{s-2} \\
& S=2 \quad 6=2 B \quad B=3 \\
& y(t)=\mathcal{L}^{-1}\{Y(s)\}=-3+6 e^{2 t}
\end{aligned}
$$

(4) Find the Fourier series for $f(x)=\left\{\begin{array}{cc}0, & -\pi<x<0 \\ 1, & 0 \leq x<\pi\end{array} . \quad p=\pi\right.$

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} d x=\left.\frac{x}{\pi}\right|_{0} ^{\pi}=1 \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (n x) d x \\
&=\left.\frac{1}{n \pi} \operatorname{sir}(n x)\right|_{0} ^{\pi}=0 \quad \text { for all } n \geqslant 1 \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \\
&=\frac{-1}{n \pi} \cos (n x) d x=\left.\frac{1}{\pi} \int_{0}^{\pi} \sin (n x)\right|_{0} ^{\pi}=\frac{-1}{n \pi}(\cos (n \pi)-\cos (0)) \\
&=\frac{-1}{n \pi}\left((-1)^{n}-1\right)=\frac{1-(-1)^{n}}{n \pi} \\
& \text { Find ty }
\end{aligned}
$$

(5) Note that $e^{3 t}=e^{t} \times e^{2 t}$. Use $f(t)=e^{t}$ and $g(t)=e^{2 t}$ to demonstrate that

$$
\begin{gathered}
\mathscr{L}\{f(t) g(t)\} \neq \mathscr{L}\{f(t)\} \times \mathscr{L}\{g(t)\} \\
\mathscr{L}\{f(t)\}=\frac{1}{s-1} \text { and } \mathscr{L}\{g(t)\}=\frac{1}{s-2} \\
\mathscr{L}\{f(t) g(t)\}=\mathscr{L}\left\{e^{3 t}\right\}=\frac{1}{s-3} \neq \frac{1}{(s-1)(s-2)}
\end{gathered}
$$

ie. $\mathscr{L}\{f(t) g(t)\}$ is Not $\mathcal{L}\{f(t)\} \cdot \mathscr{L}\{g(t)\}$
(6) A 1 kg mass is attached to a spring with spring constant $16 \mathrm{~N} / \mathrm{m}$. No damping is applied, but a 16 N external stretching force is applied for 2 seconds and then released. If the mass starts from rest at equilibrium, determine the displacement of the mass for all time $t>0$. That is, solve the following initial value problem. Use the method of Laplace transforms.

$$
\begin{aligned}
& x^{\prime \prime}+16 x=16-16 \mathscr{U}(t-2), \quad x(0)=0, \quad x^{\prime}(0)=0 \\
& \text { Let } X(s)=\mathcal{L}\{x(t)\} \\
& \mathcal{L}\left\{x^{\prime \prime}+16 x\right\}=\mathcal{L}\{16-16 u(t-2)\} \\
& s^{2} x-s x(0)-x^{\prime}(0)+16 X(s)=\frac{16}{s}-\frac{16}{s} e^{-2 s} \\
& \frac{L}{0} \\
& \left(s^{2}+16\right) X(s)=\frac{16}{s}-\frac{16}{s} e^{-2 s} \\
& X(s)=\frac{16}{s\left(s^{2}+16\right)}-\frac{16}{s\left(s^{2}+16\right)} e^{-2 s}
\end{aligned}
$$

$$
\text { Decamp: } \frac{16}{s\left(s^{2}+16\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+16}
$$

$$
16=A\left(s^{2}+16\right)+(B s+C) s
$$

$$
=(A+B) s^{2}+C s+16 A
$$

$$
\left.\begin{array}{c}
A+B=0 \\
C=0 \\
16 A=16
\end{array}\right\} \Rightarrow
$$

$$
A=1
$$

$$
B=-1
$$

$$
C=0
$$

$$
X(s)=\frac{1}{s}-\frac{s}{s^{2}+16}-\left(\frac{1}{s}-\frac{s}{s^{2}+16}\right) e^{-2 s}
$$

$$
x(t)=\mathcal{L}^{-1}\{x(s)\}
$$

$$
x(t)=1-\cos (4 t)-(1-\cos (4(t-2))) u(t-2)
$$

