Exam 4 Math 2306 sec. 54

Fall 2015

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet (8.5 " $\times 11$ ") of your own prepared notes/formulas and the provided table of Laplace transforms.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) (a) Find the half range sine series of f. Then, (b) on the graph provided, plot three periods over the interval $(-3 p, 3 p)$ of the sine series found in part (a).

$$
f(x)=1, \quad 0<x<\pi
$$

$$
\left.\begin{array}{rl}
f(x) & =\sum_{n=1}^{\infty} b_{n} \sin (n x) \text { where } b_{n}
\end{array}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x\right] \text { bn } \begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} 1 \cdot \sin (n x) d x=\left.\frac{-2}{n \pi} \cos (n x)\right|_{0} ^{\pi} \\
& =\frac{-2}{n \pi}(\cos (n \pi)-\cos 0)
\end{aligned}
$$

$$
\text { a) } f(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(1-(-1)^{n}\right) \sin (n x)
$$

(2) Use any method to evaluate the Laplace transform or inverse transform as indicated.
(a) $\mathscr{L}\left\{(t-4)^{3} \mathscr{U}(t-4)\right\}=e^{-4 s} \mathscr{L}\left\{t^{3}\right\}=\frac{3!e^{-4 s}}{s^{4}}$
(b) $\mathscr{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}}\right\}=(t-\pi) u(t-\pi)$
(c) $\mathscr{L}^{-1}\left\{\frac{s}{(s+3)^{2}+9}\right\}=\mathscr{L}^{-1}\left\{\frac{s+3-3}{(s+3)^{2}+9}\right\}=$

$$
=\mathcal{L}^{-1}\left\{\frac{s+3}{(s+3)^{2}+9}\right\}-\mathcal{L}^{-1}\left\{\frac{3}{(s+3)^{2}+9}\right\}
$$

$$
=e^{-3 t} \cos 3 t-e^{-3 t} \sin 3 t
$$

(d)

$$
\mathscr{L}\left\{e^{-0.1 t} \sin (2 t)\right\}=\frac{2}{(5+0.1)^{2}+4}
$$

(3) Solve the initial value problem using the method of Laplace transforms.

$$
\begin{aligned}
& y^{\prime}+3 y=3 t^{2} e^{-3 t}, \quad y(0)=2 \\
& \text { Lat } \mathscr{L}\{y\}=\Psi(s) \\
& \mathcal{L}\left\{y^{\prime}+3 y\right\}=\mathcal{L}\left\{3 t^{2} e^{-3 t}\right\} \\
& s Y(s)-y(0)+3 Y(\sigma)=3 \frac{2!}{(s+3)^{3}} \\
& (s+3) \varphi(6)=\frac{6}{(s+3)^{3}}+2 \\
& Y(s)=\frac{6}{(s+3)^{4}}+\frac{2}{s+3}=\frac{3!}{(s+3)^{4}}+\frac{2}{s+3} \\
& y(t)=\mathcal{L}^{-1}\{Y(s)\} \\
& =t^{3} e^{-3 t}+2 e^{-3 t}
\end{aligned}
$$

(4) Find the Fourier series of f.

$$
\begin{aligned}
f(x)= & \begin{array}{ll}
1, \quad-1<x<0 \\
3, & 0 \leq x<1
\end{array} \\
a_{0} & =\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{0} d x+\int_{0}^{1} 3 d x=\left.x\right|_{-1} ^{0}+\left.3 x\right|_{0} ^{1}=1+3=4 \\
a_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \cos (n \pi x) d x=\int_{-1}^{0} \cos (n \pi x) d x+\int_{0}^{1} 3 \cos (n \pi x) d x \\
& =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\frac{3}{n \pi} \sin (n \pi x)\right|_{0} ^{1}=0 \\
b_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \sin (n \pi x) d x=\int_{-1}^{0} \sin (n \pi x) d x+\int_{0}^{1} 3 \sin (n \pi x) d x \\
& =\left.\frac{-1}{n \pi} \cos (n \pi x)\right|_{-1} ^{1}+\left.\frac{-3}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
& =\frac{-1}{n \pi}[\cos 0-\cos (-n \pi)]-\frac{3}{n \pi}[\cos (n \pi)-\cos 0] \\
& =\frac{-1}{n \pi}+\frac{1}{n \pi}(-1)^{n}-\frac{3}{n \pi}(-1)^{n}+\frac{3}{n \pi}=\frac{2}{n \pi}\left(1-(-1)^{n}\right) \\
& =2+\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(1-(-1)^{n}\right) \sin (n \pi x)
\end{aligned}
$$

(5) An LR series circuit with inductance 1 h and resistance 6 ohms is attached to a battery with an open switch. After 1 second, the switch is closed applying a constant 60 volts. Use the method of Laplace transforms to find the current if the initial current is $i(0)=0 \mathrm{~A}$. That is, solve the IVP

$$
\begin{aligned}
& \frac{d i}{d t}+6 i=\left\{\begin{array}{lc}
0, & 0 \leq t<1 \\
60, & t \geq 1
\end{array} \quad i(0)=0\right. \\
& =60 u(t-1) \\
& y\left\{i^{\prime}+6 i\right\}=\mathcal{L}\{6 \mathrm{bu}(t-1)\} \\
& s I(s)-i(0)+6 I(s)=\frac{60}{s} e^{-s} \\
& (s+6) I(s)=\frac{60 e^{-5}}{s} \\
& I(s)=\frac{60 e^{-s}}{s(s+6)} \\
& \text { Decompose : } \frac{60}{s(s+6)}=\frac{A}{5}+\frac{B}{s+6} \Rightarrow 60=A(s+6)+B s \\
& \text { Let } s=0 \quad 60=6 A \Rightarrow A=10 \\
& S=-6 \quad 60=-6 \beta \Rightarrow \beta=-10 \\
& I(s)=\frac{10}{s} e^{-s}-\frac{10}{s+6} e^{-s} \\
& \hat{i}(t)=\mathcal{L}^{-1}\{I(s)\} \\
& =10 u(t-1)-10 e^{-6(t-1)} u(t-1)
\end{aligned}
$$

