Exam 4 Math 2306 sec. 54 Spring 2019

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Evaluate each Laplace transform.
(a) $\mathscr{L}\left\{t^{2} \mathscr{U}(t-2)\right\}=e^{-2 s} \mathcal{L}\left\{(t+2)^{2}\right\}=e^{-2 s} \mathscr{L}\left\{t^{2}+4 t+4\right\}$ $=e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{5}\right)$
(b) $\mathscr{L}\left\{e^{-2 t} \cos (\pi t)\right\}=\frac{S+2}{(s+2)^{2}+\pi^{2}}$
2. Evaluate each inverse Laplace transform.

$$
\text { (a) } \begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s}{s^{2}-8 s+20}\right\}= & \mathscr{L}^{-1}\left\{\frac{s-4}{(s-4)^{2}+4}\right\}+2 \mathcal{L}^{-1}\left\{\frac{2}{(s-4)^{2}+4}\right\} \\
& =e^{4 t} \cos 2 t+2 e^{4 t} \sin 2 t
\end{aligned}
$$

$$
\begin{array}{r}
s^{2}-8 s+20=(s-4)^{2}+4 \\
s=s-4+4 \\
4=2 \cdot 2
\end{array}
$$

(b) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+9} e^{-\pi s}\right\}=\cos (3(t-\pi)) u(t-\pi)$

$$
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\}=\cos (3 x)
$$

3. Solve the first order initial value problem using the method of Laplace transforms.

$$
\begin{aligned}
& \frac{d y}{d t}-2 y=4+t^{2} e^{2 t}, \quad y(0)=1 \quad \text { Let } \quad T(s)=\mathcal{L}\{y(t)\} \\
& \mathcal{L}\left\{y^{\prime}-2 y\right\}=\mathcal{L}\left\{4+t^{2} e^{2+}\right\} \\
& s Y_{(s)}-y(0)-2 Y(s)=\frac{4}{5}+\frac{2!}{(s-2)^{3}} \\
& (s-2) Y(s)-1=\frac{4}{5}+\frac{2!}{(s-2)^{3}} \\
& \Psi(s)=\frac{4}{s(s-2)}+\frac{2}{(s-2)^{4}}+\frac{1}{s-2} \\
& \begin{aligned}
\frac{4}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \Rightarrow 4 & =A(s-2)+B s \\
s & =0 \quad 4 \\
s & =-2 A \\
s & =2
\end{aligned} \quad \begin{aligned}
& 4=2 B
\end{aligned} \quad B=-2 \\
& Y(s)=\frac{-2}{s}+\frac{2}{s-2}+\frac{2}{(s-2)^{4}}+\frac{1}{s-2}=\frac{-2}{s}+\frac{3}{s-2}+\frac{2}{(s-2)^{4}} \\
& \text { are } \mathcal{I}^{-1}\left\{\frac{2}{s^{4}}\right\}=\frac{2}{3!} \mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=\frac{2}{3!} t^{3} \\
& \text { so } y(t)=\mathscr{L}^{-1}\{Y(s)\} \\
& y(t)=-2+3 e^{2 t}+\frac{2}{3!} t^{3} e^{2 t}
\end{aligned}
$$

$\frac{2}{3!}=\frac{1}{3}$ so we can wont

$$
y(t)=-2+3 e^{2 t}+\frac{1}{3} t^{3} e^{2 t}
$$

4. Use the method of Laplace transforms to solve the initial value problem.

$$
\begin{aligned}
& y^{\prime \prime}+y=\left\{\begin{array}{lr}
0, & 0 \leq t<\pi \\
6, & t \geq \pi
\end{array} \quad y(0)=1, \quad y^{\prime}(0)=0\right. \\
& =6 u(t-\pi) \\
& \mathcal{L}\left\{y^{\prime \prime}+y\right\}=\mathcal{L}\{6 u(t-\pi)\} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=\frac{6}{s} e^{-\pi s} \\
& \left(s^{2}+1\right) Y(s)-s=\frac{6}{s} e^{-\pi s} \\
& Y(s)=\frac{6}{s\left(s^{2}+1\right)} e^{-\pi s}+\frac{s}{s^{2}+1} \\
& \frac{6}{s\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+1} \Rightarrow 6=A\left(s^{2}+1\right)+(B s+C) s \\
& =(A+B) s^{2}+C s+A \\
& \begin{aligned}
A+B & =0 \\
C & =0
\end{aligned} \quad \Rightarrow B=-A=-6 \\
& A=6
\end{aligned}
$$

$$
\begin{gathered}
Y(s)=\frac{6}{s} e^{-\pi s}-\frac{6 s}{s^{2}+1} e^{-\pi s}+\frac{s}{s^{2}+1} \\
y(t)=\mathcal{L}^{-1}\{Y(s)\} \\
y(t)=6 u(t-\pi)-6 \cos (t-\pi) u(t-\pi)+\cos t
\end{gathered}
$$

5. Suppose that $f(x)=\left\{\begin{array}{lr}2, & -1<x<0 \\ 0, & 0<x<1\end{array}\right.$
(a) Determine the Fourier series representation of f.
(b) Sketch a graph of the Fourier series (what it converges to) over the interval $(-3,3)$.
(c) What value does the series converge to when $x=\frac{1}{2}$? When $x=1$?

$$
\begin{aligned}
& a_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{0} 2 d x+\int_{0}^{1} 0 d x=\left.2 x\right|_{-1} ^{0}=2 \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \cos (n \pi x) d x=\int_{-1}^{0} 2 \cos (n \pi x) d x=\left.\frac{2}{n \pi} \sin (n \pi x)\right|_{-1} ^{0} \\
& b_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \sin (n \pi x) d x=\int_{-1}^{0} 2 \sin (n \pi x) d x=\left.\frac{-2}{n \pi} \cos (n \pi x)\right|_{-1} ^{0} \\
& =\frac{-2}{n \pi}[\cos 0-\cos (n \pi)] \\
& \\
& =\frac{-2}{n \pi}\left(1-(-1)^{n}\right)=\frac{2}{n \pi}\left((-1)^{n}-1\right) \\
& f(x)=1+\sum_{n=1}^{\infty} \frac{2}{n \pi}\left((-1)^{n}-1\right) \sin (n \pi x)
\end{aligned}
$$

when $x=\frac{1}{2}$, the series convesen to At $x=1$, it converges to 1

