Exam 4 Math 2306 sec. 56

Fall 2017

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems; the point values are listed with the problems. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) (20 points, 5 each) Determine the Laplace transform or inverse transform as indicated. Use the table provided and any necessary algebra or function identities.
(a) $\mathscr{L}\left\{t^{3} e^{-2 t}\right\}=\frac{3!}{(s+2)^{4}}$
(b) $\mathscr{L}^{-1}\left\{\frac{e^{-3 s}}{s-5}\right\}=e^{5(t-3)} u(t-3)$
(c) $\mathscr{L}\{t \mathscr{U}(t-\pi)\}=e^{-\pi s} \mathscr{L}\{t+\pi\}=e^{-\pi s}\left(\frac{1}{s^{2}}+\frac{\pi}{s}\right)$
(d) $\mathscr{L}^{-1}\left\{\frac{1}{(s-4)^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \frac{2!}{(s-4)^{3}}\right\}=\frac{1}{2} t^{2} e^{4 t}$
(2) (10 points) A property of Laplace transforms is that

$$
\text { if } \mathscr{L}\{f(t)\}=F(s), \quad \text { then } \quad \mathscr{L}\{t f(t)\}=-F^{\prime}(s)
$$

(The prime indicates the derivative of $F(s)$.) Use this to find

$$
\left.\mathscr{L}\{t \sin t\}=-\frac{d}{d s} \frac{1}{s^{2}+1}=-\left(-\left(s^{2}+\right)\right)^{-2}(2 s)\right)=\frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

(3) (15 points) Write the given function f in terms of the unit step function \mathscr{U}, and use it to find the Laplace transform of f.

$$
\begin{aligned}
f(t)= \begin{cases}t, & 0 \leq t<4 \\
4, & t \geq 4\end{cases} & =t-t u(t-u)+4 u(t-4) \\
& =t-(t-4) u(t-4) \\
\mathcal{L}\{f(t)\} & =\mathcal{L}\{t\}-\mathcal{L}\{(t-4) u(t-1)\} \\
& =\frac{1}{s^{2}}-\frac{1}{s^{2}} e
\end{aligned}
$$

(4) (20 points) Solve the first order IVP using the Laplace transform.

$$
y(t)=2 e^{2 t}+4 e^{-3 t}
$$

$$
\begin{aligned}
& y^{\prime}+3 y=10 e^{2 t}, \quad y(0)=6 \\
& \mathscr{L}\left\{y^{\prime}\right\}+3 \mathscr{L}\{y\}=10 \mathscr{L}\left\{e^{2 t}\right\} \\
& \varphi_{1}=\mathcal{L}\{y\} \\
& s Y(s)-y(0)+3 Y_{1}(s)=\frac{10}{s-2} \\
& (s+3) Y-6=\frac{10}{s-2} \\
& Y_{1}=\frac{10}{(s-2)(s+3)}+\frac{6}{s+3} \\
& \frac{10}{(s-2)(s+3)}=\frac{A}{s-2}+\frac{B}{s+3} \Rightarrow 10=A(s+3)+B(s-2) \\
& S=2 \quad 10=S A \quad A=2 \\
& S=-3 \quad 10=-5 D \quad B=-2 \\
& \varphi=\frac{2}{s-2}-\frac{2}{s+3}+\frac{6}{s+3} \\
& =\frac{2}{5-2}+\frac{4}{5+3} \\
& y=z^{-1}\{Y\}=2 e^{2 t}+4 e^{-3 t}
\end{aligned}
$$

(5) (20 points) Solve the second order IVP using the Laplace transform.

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+y=12 t^{2} e^{t}, \quad y(0)=1, \quad y^{\prime}(0)=1 \\
& \mathcal{L}\left\{b^{\prime \prime}\right\}-2 \mathcal{L}\left\{y^{\prime}\right\}+\mathcal{L}\{y\}=12 \mathcal{L}\left\{t^{2} e^{t}\right\} \\
& s^{2} \varphi_{1}-s y(0)-y^{\prime}(\gamma)-2\left(s Y_{1}-y(0)\right)+Y=12 \frac{2!}{(s-1)^{3}} \\
& \left(s^{2}-2 s+1\right) Y_{1}(s)-s-1+2=\frac{24}{(s-1)^{3}} \\
& (s-1)^{2} Y(s)=\frac{24}{(s-1)^{3}}+s-1 \\
& Y(s)=\frac{24}{(s-1)^{5}}+\frac{s-1}{(s-1)^{2}}=\frac{24}{(s-1)^{5}}+\frac{1}{s-1} \\
& y(t)=\mathcal{L}^{-1}\{\Psi(s)\}=\mathcal{L}^{-1}\left\{\frac{4!}{(s-1)^{3}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} \\
& y=t^{4} e^{t}+e^{t}
\end{aligned}
$$

(6) (15 points) Find the Fourier series of the given function.

$$
f(x)=\frac{3}{2}+\sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n \pi} \sin (n \pi x)
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
1, & -1<x<0 \\
2, & 0 \leq x<1
\end{array} \quad p=1 \quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x) .\right. \\
& a_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{0} d x+\int_{0}^{1} 2 d x \\
& =\left.x\right|_{-1} ^{0}+\left.2 x\right|_{0} ^{1}=(0-(-1))+2(1-0)=3 \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \operatorname{cor}(n \pi x) d x=\int_{-1}^{0} \cos (n \pi x) d x+\int_{0}^{1} 2 \cos (n \pi x) d x \\
& =\left.\frac{1}{n \pi} \sin (h \pi x)\right|_{-1} ^{0}+\left.\frac{2}{n \pi} \sin (n \pi x)\right|_{0} ^{1}=0 \\
& b_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \sin (n \pi x) d x=\int_{-1}^{0} \sin (n \pi x) d x+\int_{0}^{1} 2 \sin (n \pi x) d x \\
& =\left.\frac{-1}{n T} \operatorname{cor}(n \pi x)\right|_{-1} ^{0}+\left.\frac{-2}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
& =\frac{-1}{n \pi}[\cos 0-\cos (-n \pi)]-\frac{2}{n \pi}[\cos (n \pi)-\cos (0)] \\
& =\frac{-1}{n \pi}+\frac{(-1)^{n}}{n \pi}-\frac{2(-1)^{n}}{n \pi}+\frac{2}{n \pi}=\frac{1}{n \pi}-\frac{(-1)^{n}}{n T} \\
& b_{n}=\frac{1-(-1)^{n}}{n \pi}
\end{aligned}
$$

