Exam 4 Math 2306 sec. 57

Fall 2017

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	

INSTRUCTIONS: There are 6 problems; the point values are listed with the problems. You may use one sheet ($8.5 " \times 11$ ") of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) (20 points, 5 each) Determine the Laplace transform or inverse transform as indicated. Use the table provided and any necessary algebra or function identities.
(a) $\mathscr{L}\left\{t^{5} e^{-4 t}\right\}=\frac{5!}{(s+4)^{6}}$
(b) $\mathscr{L}^{-1}\left\{\frac{e^{-5 s}}{s-3}\right\}=e^{3(t-5)} u(t-5)$
(c) $\mathscr{L}\{t \mathscr{U}(t-2 \pi)\}=e^{-2 \pi s} f\{t+2 \pi\}$

$$
=e^{-2 \pi s}\left(\frac{1}{s^{2}}+\frac{2 \pi}{s}\right)
$$

(d) $\mathscr{L}^{-1}\left\{\frac{1}{(s-3)^{4}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{3!} \frac{3!}{(s-3)^{4}}\right\}=\frac{1}{6} t^{3} e^{3 t}$
(2) (10 points) A property of Laplace transforms is that

$$
\text { if } \mathscr{L}\{f(t)\}=F(s), \quad \text { then } \quad \mathscr{L}\{t f(t)\}=-F^{\prime}(s)
$$

(The prime indicates the derivative of $F(s)$.) Use this to find

$$
\mathscr{L}\{t \sin (2 t)\}=-\frac{d}{d s} \frac{2}{s^{2}+4}=-\left(-2\left(s^{2}+4\right)^{-2}(2 s)\right)=\frac{4 s}{\left(s^{2}+4\right)^{2}}
$$

(3) (15 points) Write the given function f in terms of the unit step function \mathscr{U}, and use it to find the Laplace transform of f.

$$
\begin{aligned}
f(t)=\left\{\begin{array}{l}
t, 0 \leq t<6 \\
6, \\
t \geq 6
\end{array}\right. & =t-t u(t-6)+6 u(t-6) \\
& =t-(t-6) u(t-6) \\
\mathcal{L}\{f(t)\} & =\mathscr{L}\{t\}-\mathscr{L}\{(t-6) u(t-6)\} \\
& =\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-6 s}
\end{aligned}
$$

(4) (20 points) Solve the first order IVP using the Laplace transform.

$$
\begin{aligned}
& y^{\prime}+2 y=15 e^{3 t}, \quad y(0)=-2 \\
& \varphi_{1}=\mathscr{L}\{y\} \\
& \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=15 \mathcal{L}\left\{e^{3 t}\right\} \\
& s Y(s)-y(0)+2 Y(s)=15 \frac{1}{s-3} \\
& (s+2) Y+2=\frac{1 s}{s-3} \\
& Y=\frac{1 s}{(s-3)(s+2)}+\frac{-2}{(s+2)} \\
& \frac{15}{(s-3)(s+2)}=\frac{A}{s-3}+\frac{B}{s+2} \Rightarrow 15=A(s+2)+B(s-3) \\
& S=3 \quad 5 A=15 \Rightarrow A=3 \\
& S=-2 \quad-5 B=15 \Rightarrow B=-3 \\
& \varphi=\frac{3}{s-3}-\frac{3}{s+2}-\frac{2}{s+2}=\frac{3}{s-3}-\frac{5}{s+2} \\
& y=\mathcal{L}^{-1}\{Y\}=3 \mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\}-5 \mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\} \\
& y=3 e^{3 t}-5 e^{-2 t}
\end{aligned}
$$

(5) (20 points) Solve the second order IVP using the Laplace transform.

$$
\begin{gathered}
y^{\prime \prime}-4 y^{\prime}+4 y=12 t^{2} e^{2 t}, \quad y(0)=1, \quad y^{\prime}(0)=2 \\
\mathscr{L}\left\{y^{\prime \prime}\right\}-4 \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=12 \mathcal{L}\left\{t^{2} e^{2 t}\right\} \\
s^{2}\left\{(s)-s y(0)-y^{\prime}(0)-4(s \varphi(s)-y(s))+4 Y(s)=12 \frac{2!}{(s-2)^{3}}\right. \\
\left(s^{2}-4 s+4\right) \varphi-s-2+4=\frac{24}{(s-2)^{2}} \\
(s-2)^{2} \varphi(s)=\frac{24}{(s-2)^{3}}+s-2 \\
Y(s)=\frac{24}{(s-2)^{5}}+\frac{s-2}{(s-2)^{2}}=\frac{4!}{(s-2)^{5}}+\frac{1}{s-2} \\
y=\mathcal{L}^{-1}\{Y(s)\}=\mathscr{L}^{-1}\left\{\frac{4!}{(s-2)^{5}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
\\
\qquad y=t^{4} e^{2 t}+e^{2 t}
\end{gathered}
$$

(6) (15 points) Find the Fourier series of the given function.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
2, & -1<x<0 \\
1, & 0 \leq x<1
\end{array} \quad p=1 \quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right. \\
& a_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{0} 2 d x+\int_{0}^{1} d x \\
&=\left.2 x\right|_{-1} ^{0}+\left.x\right|_{0} ^{1}=(0-(-2))+(1-0)=3 \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \cos (n \pi x) d x=\int_{-1}^{0} \operatorname{cor}(n \pi x) d x+\int_{0}^{1} \operatorname{cor}(n \pi x) d x \\
&=\left.\left.\frac{2}{n \pi} \sin (n / x)\right|_{-1} ^{0}+\frac{1}{n \pi} \sin _{0} / n \pi x\right)\left.\right|_{0} ^{1}=0 \\
& b_{n}= \div \int_{-1}^{1} f\left(x \sin (n \pi x) d x=\int_{-1}^{0} 2 \sin (n \pi x) d x+\int_{0}^{1} \sin (n \pi x) d x\right. \\
&=\left.\frac{-2}{n \pi} \cos (n \pi x)\right|_{-1} ^{0}+\left.\frac{-1}{n \pi} \operatorname{cor}(n \pi x)\right|_{0} ^{1} \\
&=\frac{-2}{n \pi}[\cos 0-\operatorname{cor}(-n \pi)]-\frac{1}{n \pi}[\operatorname{cor}(n \pi)-\cos 0] \\
&=\frac{-2}{n \pi}+\frac{2(-1)^{n}}{n \pi}-\frac{(-1)^{n}}{n \pi}+\frac{1}{n \pi}=\frac{-1}{n \pi}+\frac{(-1)^{n}}{n \pi} \\
& b_{n}=\frac{(-1)^{n}-1}{n \pi} \\
& f(x)=\frac{3}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n \pi} \sin (n \pi x)
\end{aligned}
$$

