Exam 4 Math 2306 sec. 59

Spring 2016

Name: Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

| Problem |
| :---: | Points,\(~\left(\begin{array}{c|}\hline 1

\hline 2

\hline 3

\hline 4

\hline 5

\hline\end{array}\right.\)

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet (8.5 " $\times 11^{\prime \prime}$) of your own prepared notes/formulas.

No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

Throughout, take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$ or $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$, which ever is appropriate to the units in context.
(1) A LRC series circuit has inductance 2 henries, resistance 10 ohms , and capacitance $\frac{1}{12}$ farads. A force of $E=8 e^{-t}$ volts is applied. If the initial charge on the capacitor $q(0)=0$ and the initial current $i(0)=0$, determine the charge on the capacitor for $t>0$.

$$
\begin{array}{ll}
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E \quad \text { Here, } L=2, R=10, q=\frac{1}{12} \\
E=8 e^{-t} \\
2 q^{\prime \prime}+10 q^{\prime}+\frac{1}{1 / 12} q=8 e^{-t} \quad q(0)=0, \quad q^{\prime}(\gamma)=0 \\
2 q^{\prime \prime}+10 q^{\prime}+12 q=8 e^{-t} \Rightarrow q^{\prime \prime}+5 q^{\prime}+6 q=4 e^{-t}
\end{array}
$$

Char. Egn: $r^{2}+5 r+6=0 \Rightarrow(r+2)(r+3)=0$

$$
r=-2 \text { or } r=-3
$$

$$
f_{c}=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

Using Undetermined Coefficients $f_{p}=A e^{-t}$

$$
\begin{gathered}
q_{p}^{\prime}=-A e^{-t}, q_{p}^{\prime \prime}=A e^{-t} \\
{q_{p}^{\prime \prime}+\delta_{q_{p}}^{\prime}+\sigma_{q_{p}}=A e^{-t}-5 A e^{-t}+6 A e^{-t}=4 e^{-t}}^{2 A=4 \quad A=2}
\end{gathered}
$$

$$
q(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}+2 e^{-t}
$$

$$
q^{\prime}(t)=-2 c_{1} e^{-2 t}-3 c_{2} e^{-3 t}-2 e^{-t}
$$

$$
\begin{aligned}
& q(0)=c_{1}+c_{2}+2=0 \\
& q^{\prime}(0)=-2 c_{1}-3 c_{2}-2=0
\end{aligned}
$$

So the charge is

$$
f(t)=-4 e^{-2 t}+2 e^{-3 t}+2 e^{-t}
$$

$$
\begin{aligned}
c_{1}+c_{2} & =-2 \\
-2 c_{1}-3 c_{2} & =2 \\
2 c_{1}+2 c_{2} & =-4 \\
-c_{2} & =-2 \quad c_{2}
\end{aligned}=2, ~ c_{1}=-2-c_{2}=-4 .
$$

(2) A 16 lb object is attached to a spring whose spring constant is $8 \mathrm{lb} / \mathrm{ft}$. It is subject to a damping force that is numerically equal to 4 times the instantaneous velocity.
(a) Find the mass m in slugs.
weight $\omega=m g$

$$
m=\frac{w}{g}=\frac{161 b}{32 \frac{f+}{\mathrm{sec}^{2}}}=\frac{1}{2} \sin
$$

(b) The object is initially displaced $1 / 2 \mathrm{ft}$ above equilibrium and given zero initial velocity. Determine its displacement for $t>0$.

$$
\begin{array}{rl}
m x^{\prime \prime}+\beta x^{\prime}+k x=0 & m=\frac{1}{2}, \beta=4, k=8 \\
\frac{1}{2} x^{\prime \prime}+4 x^{\prime}+8 x=0 \Rightarrow & x^{\prime \prime}+8 x^{\prime}+16 x=0 \\
& x(0)=\frac{1}{2}, \quad x^{\prime}(0)=0
\end{array}
$$

Ch.eqn

So $x(t)=\frac{1}{2} e^{-4 t}+2 t e^{-4 t}$.
(c) Is this motion underdamped, overdamped, or critically damped?

There was one repeated rect soot.
The system is critically damped
(3) Evaluate each inverse Laplace transform.
(a) $\mathscr{L}^{-1}\left\{e^{-2 s}\left(\frac{1}{s+4}-\frac{2}{s^{3}}\right)\right\}$

$$
\mathcal{L}^{-1}\left\{\frac{1}{s+4}\right\}=e^{-4 t}
$$

$$
=\mathcal{L}^{-1}\left\{e^{-2 s} \frac{1}{s+4}\right\}-\mathcal{L}^{-1}\left\{e^{-2 s} \frac{2}{s^{3}}\right\}
$$

$$
\mathcal{L}^{-1}\left\{\frac{2}{s^{3}}\right\}=t^{2}
$$

$$
=e^{-4(t-2)} u(t-2)-(t-2)^{2} u(t-2)
$$

(b)

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s}{(s-1)^{2}+4}\right\}=\mathcal{L}^{-1}\left\{\frac{s-1+1}{(s-1)^{2}+4}\right\} \\
&=\mathscr{L}^{-1}\left\{\frac{s-1}{(s-1)^{2}+4}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{2} \frac{2}{(s-1)^{2}+4}\right\} \\
&=e^{t} \cos (2 t)+\frac{1}{2} e^{t} \sin (2 t)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1} \Rightarrow \\
& \text { (c) } \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+s}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\} \\
& S=0 \quad 1=A \\
& S=-1 \quad 1=-B \\
& =\mathscr{L}^{-1}\left\{\frac{1}{5}\right\}-\mathscr{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
& =1-e^{-t}
\end{aligned}
$$

(4) Evaluate each Laplace transform.
(a)

$$
\begin{aligned}
\mathscr{L}\left\{\left(e^{-t}-1\right)^{2}\right\} & =\mathscr{L}\left\{e^{-2 t}-2 e^{-t}+1\right\} \\
& =\mathcal{L}\left\{e^{-2 t}\right\}-2 \mathscr{L}\left\{e^{-t}\right\}+\mathscr{L}\{1\} \\
& =\frac{1}{s+2}-\frac{2}{s+1}+\frac{1}{5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathscr{L}\{3 t \mathscr{U}(t-4)\} & =e^{-4 s} \mathscr{L}\{3(t+4)\}=e^{-4 s} \mathcal{L}\{3 t+12\} \\
& =3 e^{-4 s} \mathscr{L}\{t\}+12 e^{-4 s} \mathscr{L}\{1\} \\
& =\frac{3 e^{-45}}{s^{2}}+\frac{12 e^{-45}}{5}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathscr{L}\left\{t^{2} e^{2 t}+e^{t} \sin (2 t)\right\} & =\mathcal{Y}\left\{t^{2} e^{2 t}\right\}+\mathcal{Y}\left\{e^{t} \sin (2 t)\right\} \\
& =\frac{2}{(s-2)^{3}}+\frac{2}{(s-1)^{2}+4}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\mathscr{L}\left\{\cos (\pi t)+t^{4}\right\} & =\mathscr{L}\{\operatorname{cor}(\pi t)\}+\mathscr{L}\left\{t^{4}\right\} \\
& =\frac{s}{s^{2}+\pi^{2}}+\frac{4!}{s^{5}} \\
& =\frac{s}{s^{2}+\pi^{2}}+\frac{24}{S^{5}}
\end{aligned}
$$

(5) Find the general solution of the nonhomogeneous equation. The complementary soludion is provided.

$$
\begin{gathered}
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=\frac{1}{x}, \quad y_{c}=c_{1} x+c_{2} x \ln (x) \\
y_{1}=x \quad y_{2}=x \ln (x) \quad \omega=\left|\begin{array}{cc}
x & x \ln x \\
1 & \ln x+1
\end{array}\right|=x \ln x+x-x \ln x \\
g(x)=\frac{1}{x}
\end{gathered}=x
$$

put $y_{p}=U_{1} y_{1}+\psi_{2} y_{2}$ (variation of parameter)

$$
\begin{aligned}
& u_{1}=\int-\frac{y_{2} \delta}{\omega} d x=\int \frac{-x \ln x\left(\frac{1}{x}\right)}{x}=-\int \frac{\ln x}{x} d x \\
& =\int-v d v=\frac{-v^{2}}{2}=-\frac{1}{2}(\ln x)^{2} \text { put } v=\ln x, \quad d v=\frac{1}{x} d x \\
& u_{2}=\int \frac{y_{1} g}{w} d x=\int \frac{x\left(\frac{1}{x}\right)}{x} d x=\int \frac{1}{x} d x=\ln x \\
& y_{p}=-\frac{1}{2}(\ln x)^{2} \cdot x+\ln x(x \ln x) \\
& =\frac{-1}{2} x(\ln x)^{2}+x(\ln x)^{2}=\frac{1}{2} \times(\ln x)^{2}
\end{aligned}
$$

The genera solution is

$$
y=c_{1} x+c_{2} x \ln x+\frac{1}{2} x(\ln x)^{2}
$$

