Exam 4 Math 2306 sec. 60 Spring 2019

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	

INSTRUCTIONS: There are 5 problems worth 20 points each. You may use one sheet ($8.5 " \times 11 "$) of your own prepared notes/formulas.
No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

1. Evaluate each Laplace transform.
(a) $\mathscr{L}\left\{t^{4} e^{6 t}\right\}=\frac{41}{(s-6)^{5}}$
(b) $\mathscr{L}\left\{t^{2} \mathscr{U}(t-\pi)\right\}=e^{-\pi s} \mathcal{L}\left\{(t+\pi)^{2}\right\}=e^{-\pi s} \mathcal{L}\left\{t^{2}+2 \pi t+\pi^{2}\right\}$

$$
=e^{-\pi s}\left(\frac{2!}{s^{3}}+\frac{2 \pi}{s^{2}}+\frac{\pi^{2}}{s}\right)
$$

2. Evaluate each inverse Laplace transform.

$$
\text { (a) } \begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4 s+8}\right\}= & \mathscr{L}^{-1}\left\{\frac{s+2}{(s+2)^{2}+4}\right\}-\mathcal{L}^{-1}\left\{\frac{2}{\left(s+2 s^{2}+4\right.}\right\} \\
& =e^{-2 t} \cos 2 t-e^{-2 t} \sin 2 t
\end{aligned}
$$

$$
\begin{gathered}
s^{2}+4 s+8=(s+2)^{2}+4 \\
s=s+2-2
\end{gathered}
$$

(b) $\mathscr{L}^{-1}\left\{\frac{e^{-\frac{\pi}{4} s}}{s^{2}+25}\right\}=\frac{1}{5} \sin \left(5\left(t-\frac{\pi}{4}\right)\right) u\left(t-\frac{\pi}{4}\right)$

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+2 s}\right\}=\frac{1}{5} \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+25}\right\}=\frac{1}{5} \sin 5 t
$$

3. Solve the first order initial value problem using the method of Laplace transforms.

$$
\begin{aligned}
& \frac{d y}{d t}+3 y=6+t e^{-3 t}, \quad y(0)=1 \quad \text { Let } \quad \Psi(s)=\mathcal{L}\{y(t)\} \\
& \mathcal{L}\left\{y^{\prime}+3 y\right\}=\mathcal{L}\left\{6+t e^{-3+}\right\} \\
& s Y(s)-y(s)+3 Y(s)=\frac{6}{5}+\frac{1}{(s+3)^{2}} \\
& (s+3) Y(s)-1=\frac{6}{5}+\frac{1}{(s+3)^{2}} \\
& Y_{1}(s)=\frac{6}{s(s+3)}+\frac{1}{s+3}+\frac{1}{(s+3)^{3}} \\
& \begin{aligned}
&\left.\frac{6}{s(s+3)}=\frac{A}{s}+\frac{B}{s+3} \Rightarrow \begin{array}{rl}
6 & =A(s+3)+B s \\
s & =0 \quad 6
\end{array}\right)=3 A \quad A=2 \\
& s=-3 \quad 6=-3 B
\end{aligned} \\
& \varphi(s)=\frac{2}{s}-\frac{2}{s+3}+\frac{1}{s+3}+\frac{1}{(s+3)^{3}} \\
& =\frac{2}{s}-\frac{1}{s+3}+\frac{1}{(s+3)^{3}} \\
& \text { No that } \mathscr{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\frac{1}{2!} \mathscr{L}^{-1}\left\{\frac{2!}{s^{3}}\right\}=\frac{1}{2!} t^{2} \\
& \text { As } y(t)=\mathcal{L}^{-1}\{Y(s)\} \\
& y(t)=2-e^{-3 t}+\frac{1}{2!} t^{2} e^{-3 t}
\end{aligned}
$$

4. Use the method of Laplace transforms to solve the initial value problem.

$$
\begin{gathered}
y^{\prime \prime}+y=\left\{\begin{array}{cc}
0, & 0 \leq t<3 \pi \\
4, & t \geq 3 \pi
\end{array} \quad y(0)=1, \quad y^{\prime}(0)=0\right. \\
=4 u(t-3 \pi) \\
\mathcal{L}\left\{y^{\prime \prime}+y\right\}=\mathscr{L}\{4 u(t-3 \pi)\} \\
s^{2} \Psi(s)-s y(0)-y^{\prime}(\Delta)+U(s)=\frac{4}{s} e^{-3 \pi s} \\
\left(s^{2}+1\right) Y(s)-s \\
Y(s)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{4}{s\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B s+c}{s^{2}+1} \Rightarrow 4=A\left(s^{2}+1\right)+(B s+C) s \\
&=(A+B) s^{2}+C s+A \\
& A+B=0 \\
& C=0 \\
& A=4
\end{aligned}
$$

$$
\varphi(s)=\frac{4}{s} e^{-3 \pi s}-\frac{4 s}{s^{2}+1} e^{-3 \pi s}+\frac{s}{s^{2}+1}
$$

$$
y(t)=\mathcal{L}^{-1}\left\{\psi_{(s)}\right\}
$$

$$
y(t)=4 u(t-3 \pi)-4 \cos (t-3 \pi) v(t-3 \pi)+\cos t
$$

5. Suppose that $f(x)=\left\{\begin{array}{lr}1, & -\pi<x<0 \\ -1, & 0<x<\pi\end{array}\right.$
(a) Determine the Fourier series representation of f.
(b) Sketch a graph of the Fourier series (what it converges to) over the interval $(-3 \pi, 3 \pi)$.
(c) What value does the series converge to when $x=\frac{\pi}{2}$? When $x=\pi$?

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=0 \text { as } f \text { is add } \\
& \text { Sinnilerly, } a_{n}=0 \quad f \text { is } r d d \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi}(-1) \sin (n x) d x \\
& \\
& =\frac{2}{\pi}\left[\left.\frac{1}{n} \cos (n x)\right|_{0} ^{\pi}=\frac{2}{n \pi}[\cos (n \pi)-\cos (0)]\right. \\
& \\
& =\frac{2}{n \pi}\left((-1)^{n}-1\right) \\
& f(x)
\end{aligned} \begin{aligned}
& \sum_{n=1}^{\infty} \frac{2}{n \pi}\left((-1)^{n}-1\right) \sin (n x)
\end{aligned}
$$

At $\frac{\pi}{2}$, the series converges to -1
At π, it converges to 0

