Final Exam Math 2254 sec. 002

Spring 2015

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

INSTRUCTIONS: There are 11 problems worth 10 points each. You may exclude any one problem, or I will count your best 10 out of 11 . No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam and may result in a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Find a power series representation in the form $\sum_{n=0}^{\infty} c_{n} x^{n}$ for the given function and identify its radius of convergence.

$$
f(x)=\frac{1}{2+x}
$$

$$
f(x)=\frac{1}{2\left(1+\frac{x}{2}\right)}=\frac{1 / 2}{1-\left(\frac{-x}{2}\right)}
$$

$$
\begin{array}{ll}
=\sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{-x}{2}\right)^{n} & \left.|f \quad| \frac{-x}{2} \right\rvert\,<1 \\
=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{2^{n+1}} & |x|<2
\end{array}
$$

(2) Find the Taylor Polynomial of degree 2 centered at $a=1$ for the function $f(x)=x^{2} \ln (x)$.

$$
\begin{array}{ll}
f(x)=x^{2} \ln x & f(1)=0 \\
f^{\prime}(x)=2 x \ln x+x & f^{\prime}(1)=1 \\
f^{\prime \prime}(x)=2 \ln x+2+1 & f^{\prime \prime}(1)=3 \\
T_{2}(x)=x-1+\frac{3}{2}(x-1)^{2}
\end{array}
$$

(3) Evaluate the limit using any applicable technique. (If you use any special result, e.g. squeeze theorem, l'Hopital's rule etc., identify it.)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos x-e^{x}}{x}={ }^{" \prime} \frac{0}{0} \ell^{\prime} H \text { rowel } \\
& =\lim _{x \rightarrow 0} \frac{\sin x-e^{x}}{1}=\frac{-1}{1}=-1
\end{aligned}
$$

(4) Evaluate each indefinite integral.
(a) $\int \frac{d x}{x^{2}+9}=\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+C$
(b) $\int \frac{d x}{\sqrt{9-x^{2}}}=\sin ^{-1}\left(\frac{x}{3}\right)+C$
(5) Find the equation of the line tangent to the graph of the parametric curve at the indicated point.

$$
x=2 \sin t, \quad y=t^{3}+4 t-1, \quad \text { at } \quad t=0
$$

when $t=0, \quad x=0 \quad y=-1$

$$
\begin{gathered}
\frac{d x}{d t}=2 \cos t \quad \frac{d y}{d t}=3 t^{2}+4 \quad \frac{d y}{d x}=\frac{3 t^{2}+4}{2 \cos t} \\
\text { stope } m=\left.\frac{d y}{d x}\right|_{t=0}=\frac{4}{2}=2 \\
y+1=2(x-0) \quad \Longrightarrow \quad y=2 x-1
\end{gathered}
$$

(6) Use logarithmic differentiation to find $\frac{d y}{d x}$ where $y=(\cos x)^{x}$.

$$
\begin{aligned}
& \ln y= \ln (\cos x)^{x}=x \ln (\cos x) \\
& \frac{1}{y} \frac{d y}{d x}=\ln \cos x+x \frac{-\sin x}{\cos x} \\
& \frac{d y}{d x}= y[\ln \cos x-x \tan x] \\
& \frac{d y}{d x}=(\cos x)^{x}[\ln \cos x-x \tan x]
\end{aligned}
$$

(7) Determine if the improper integral is convergent or divergent. If convergent, find its value.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\ln x}{x^{2}} d x \\
& =\lim _{t \rightarrow \infty}\left[-\frac{\ln x}{x}-\left.\frac{1}{x}\right|_{1} ^{t}\right. \\
& =\lim _{t \rightarrow \infty}\left[\frac{-\ln t}{t}-\frac{1}{t}-\left(\frac{-\ln 1}{1}-\frac{1}{1}\right)\right] \\
& =0-0+1=1
\end{aligned}
$$

$$
\begin{array}{ll}
& \int \frac{\ln x}{x^{2}} d x \\
= & u=\ln \\
= & v=\frac{-\frac{1}{x}}{x}+\int \frac{1}{x^{2}} d x \\
& \frac{-\ln x}{x}-\frac{1}{x}+C \\
& \lim _{t \rightarrow \infty} \frac{\ln t}{t}=\frac{\infty}{\infty} \\
& \lim _{t \rightarrow \infty} \frac{1}{t}=0
\end{array}
$$

(8) For each integral, draw a representative triangle that can be used to evaluate it when using trigonometric substitution. Identify the trigonometric substitution $x=f(\theta)$. You are not required to evaluate the integrals.
(a) $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$

$$
x=2 \sin \theta
$$

(b) $\int \frac{\sqrt{x^{2}+1}}{2 x} d x$

$$
x=\tan \theta
$$

(c) $\int \frac{1}{\sqrt{16+x^{2}}} d x$

$$
x=4 \tan \theta
$$

(9) Evaluate the indefinite integral using any applicable technique.

$$
\begin{array}{rlr}
\int \cos ^{3} x \sin ^{2} x d x & =\int \sin ^{2} x \cos ^{2} x \cos x d x \\
& =\int \sin ^{2} x\left(1-\sin ^{2} x\right) \cos x d x & u=\sin x \\
& =\int\left(u^{2}-u^{4}\right) d u=\cos x d x \\
& =\frac{u^{3}}{3}-\frac{u^{5}}{5}+C \\
& =\frac{\sin ^{3} x}{3}-\frac{\sin ^{5} x}{5}+C
\end{array}
$$

(10) Match each function on the right to its derivative on the left. Put the letter of the function in the correct blank next to its derivative.

$f(x)$		$f^{\prime}(x)$
(a) $\ln (\cos x)$	$\frac{b}{c} 3 e^{3 x}$	
(b) $e^{3 x}$	$-\frac{e}{x \sqrt{x^{2}-1}}$	
(c) $\sec ^{-1}(x)$	$\frac{1}{\sqrt{x^{2}-1}}$	
(d) $e^{\ln x}$	$-\tan x$	
(e) $\ln \left\|x+\sqrt{x^{2}-1}\right\|$		

(11) Use the definition of the Maclaurin series to find the Maclaurin series for the given function and identify its radius of convergence.

$$
\begin{aligned}
& f(x)=4^{x} \\
& f^{\prime}(x)=4^{x} \ln 4 \\
& f^{\prime \prime}(x)=4^{x}(\ln 4)^{2} \\
& f^{\prime \prime \prime}(x)=4^{x}(\ln 4)^{3} \\
& \vdots \\
& f^{(n)}(x)=4^{x}(\ln 4)^{n}
\end{aligned}
$$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

$$
f_{(0)}^{(n)}=4^{0}(\ln 4)^{n}=(\ln 4)^{n}
$$

$$
f(x)=\sum_{n=0}^{\infty} \frac{(\ln 4)^{n}}{n!} x^{n}
$$

$$
\begin{array}{r}
\lim _{n+\infty}\left|\frac{(\ln 4)^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}(\ln 4)^{n}}\right| \\
=\lim _{n \rightarrow \infty}\left|\frac{x \ln 4}{(n+1)}\right|=0 \quad 0<1 \\
\text { for all } \\
\text { real } \\
x
\end{array}
$$

The radius $R=\infty$.

