Final Exam Math 2254 sec. 002

Spring 2015

Name:	Solutions
Your signature (req	ired) confirms that you agree to practice academic honesty
Signature:	

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

INSTRUCTIONS: There are 11 problems worth 10 points each. You may exclude any one problem, or I will count your best 10 out of 11. No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam and may result in a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.

(1) Find a power series representation in the form $\sum_{n=0}^{\infty} c_n x^n$ for the given function and identify its radius of convergence.

$$f(x) = \frac{1}{2+x}$$

$$f(x) = \frac{1}{Z(1+\frac{x}{Z})} = \frac{1/2}{1-\left(\frac{-x}{Z}\right)}$$

$$=\sum_{n=0}^{\infty}\frac{1}{2}\left(\frac{-x}{2}\right)^{n}$$

$$=\sum_{N=0}^{\infty}\frac{(-1)^{N}}{2^{N+1}}$$
 $|x|<2$

(2) Find the Taylor Polynomial of degree 2 centered at a=1 for the function $f(x)=x^2\ln(x)$.

$$f'(x) = 2 \times Jn \times + X$$

$$T_{z}(x) = x-1 + \frac{3}{2}(x-1)^{2}$$

(3) Evaluate the limit using any applicable technique. (If you use any special result, e.g. squeeze theorem, l'Hopital's rule etc., identify it.)

$$\lim_{x \to 0} \frac{\cos x - e^x}{x} = \frac{0}{2}$$

$$= \lim_{x \to 0} \frac{\sin x - e}{1} = \frac{-1}{1} = -1$$

$$= -\frac{1}{1} = -\frac{1}{1}$$

(4) Evaluate each indefinite integral.

(a)
$$\int \frac{dx}{x^2 + 9} = \frac{1}{3} bon'(\frac{x}{3}) + C$$

(b)
$$\int \frac{dx}{\sqrt{9-x^2}} = \sin\left(\frac{x}{3}\right) + C$$

(5) Find the equation of the line tangent to the graph of the parametric curve at the indicated point.

$$x = 2\sin t$$
, $y = t^3 + 4t - 1$, at $t = 0$

When
$$t=0$$
, $x=0$ $y=-1$

$$\frac{dx}{dt} = 2 \cos t$$

$$\frac{dy}{dt} = 3t^2 + 4$$

$$\frac{dy}{dx} = \frac{3t^2 + 4}{2 \cos t}$$

$$Slope \qquad M = \frac{dy}{dx} \Big|_{t=0} = \frac{4}{2} = 2$$

$$y+1 = 2(x-0) \implies y = 2x-1$$

(6) Use logarithmic differentiation to find $\frac{dy}{dx}$ where $y = (\cos x)^x$.

$$\frac{dy}{dx} = y \left[\ln(\cos x) + x + \frac{-\sin x}{\cos x} \right]$$

$$\frac{dy}{dx} = y \left[\ln(\cos x) - x + \cos x \right]$$

$$\frac{dy}{dx} = (\cos x)^{x} \left[\ln(\cos x) - x + \cos x \right]$$

(7) Determine if the improper integral is convergent or divergent. If convergent, find its value.

$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x^{2}} dx$$

$$= \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t}$$

$$\int \frac{0nx}{x^2} dx$$

$$= -\frac{1}{nx} + \int \frac{1}{x^2} dx$$

$$= -\frac{1}{nx} - \frac{1}{x} + C$$

$$\lim_{t \to \infty} \frac{\ln t}{t} = \frac{\Delta}{\infty}$$

$$\lim_{t \to \infty} \frac{1}{t} = 0$$

(8) For each integral, draw a representative triangle that can be used to evaluate it when using trigonometric substitution. Identify the trigonometric substitution $x = f(\theta)$. You are not required to evaluate the integrals.

(a)
$$\int \frac{x^2}{\sqrt{4-x^2}} \, dx$$

(b)
$$\int \frac{\sqrt{x^2 + 1}}{2x} \, dx$$

(c)
$$\int \frac{1}{\sqrt{16+x^2}} dx$$

(9) Evaluate the indefinite integral using any applicable technique.

$$\int \cos^3 x \sin^2 x \, dx = \int \sin^2 x \, \cos^2 x \, \cos x \, dx$$

$$= \int \sin^2 x \, (1 - \sin^2 x) \, \cot x \, dx$$

$$= \int ((u^2 - u^4)) \, du$$

$$= \frac{u^3}{3} - \frac{u^5}{5} + C$$

$$= \frac{\sin^3 x}{3} - \frac{\sin^3 x}{5} + C$$

(10) Match each function on the right to its derivative on the left. Put the letter of the function in the correct blank next to its derivative.

f(x)	f'(x)
(a) $\ln(\cos x)$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
(b) e^{3x}	${x\sqrt{x^2-1}}$
(c) $\sec^{-1}(x)$	$\underline{}$ $\frac{1}{\sqrt{x^2-1}}$
(d) $e^{\ln x}$	$-\tan x$
(e) $\ln x + \sqrt{x^2 - 1} $	<u> </u>

(11) Use the definition of the Maclaurin series to find the Maclaurin series for the given function and identify its radius of convergence.

$$f(x) = 4^{x}$$

$$f'(x) = 4^{x} \text{ Ind}$$

$$f''(x) = 4^{x} \text{ Ind}$$

$$f'''(x) = 4^{x} \text{ Ind}$$

$$\vdots$$

$$f'''(x) = 4^{x} \text{ Ind}$$

$$\vdots$$

$$f'''(x) = 4^{x} \text{ Ind}$$

$$\lim_{n \to \infty} \left| \frac{(0ny)}{(n+1)!} \frac{x^{n+1}}{x^n(2ny)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x}{(n+1)!} \frac{(ny)}{(n+1)!} \right| = 0$$

$$for all$$
real