Final Exam Math 2306 sec. 54

Fall 2015

Name: (1 point)
Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 11 points each. You may eliminate any one problem, or I will count your best 9 out of 10 . You may use one sheet $\left(8.5 " \times 11^{\prime \prime}\right)$ of your own prepared notes/formulas and the provided table of Laplace transforms. No use of a calculator, text book, smart device, or other resource is permitted. Illicit use of any additional resource will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Solve the first order initial value problem using any applicable technique.

$$
\begin{aligned}
& \frac{d y}{d x}+y=4 x e^{x} y(0)=2 \\
& P(x)=1 \quad \mu=e^{\int d x}=e^{x} \\
& \int \frac{d}{d x}\left(e^{x} y\right) d x=\int 4 x e^{x} \cdot e^{x} d x \\
& e^{x} y=2 x e^{2 x}-\int 2 e^{2 x} d x \\
&=2 x e^{2 y}-e^{2 x}+C \quad u=4 x \quad v=\frac{1}{2} e^{2 x} \quad d v=e^{2 x} d x \\
& y=2 x e^{x}-e^{x}+C e^{-x} \quad y(0)=-1+C=2 \Rightarrow C=3 \\
& y=2 x e^{x}-e^{x}+3 e^{-x}
\end{aligned}
$$

(2) Without attempting to solve any of the following nonhomogeneous equations, determine if it is POSSIBLE to find a particular solution y_{p} using the method of undetermined coefficients (MUC), using variation of parameters (VP), or both. Assume in all cases that the complementary solution y_{c} is already known.
(a) $x^{2} y^{\prime \prime}+2 x y^{\prime}-3 y=e^{2 x}$
(b) $y^{\prime \prime}-3 y=e^{2 x}$
(c) $2 y^{\prime \prime}+3 y^{\prime}-y=x^{-1} \sin x$

MUS VP

MUS VP

MUS

Both
(3) A 300 gallon tank initially holds fresh water. Brine containing 1 pound of salt per gallon is pumped in at a rate of 3 gallons per minute, and the well mixed solution is pumped out at the same rate. Determine the amount of salt $A(t)$ in pounds at the time t in minutes for all $t>0$.

$$
\begin{aligned}
& A(0)=0 \\
& \frac{d A}{d t}=r_{i} C_{i}-r_{0} C_{0}=2 \cdot 3-3 \cdot \frac{A}{300} \\
& \frac{d A}{d t}+\frac{1}{100} A=3 \quad \mu=e^{\int \frac{1}{100 d t}}=e^{\frac{1}{100} t} \\
& \int \frac{d}{d t}\left[e^{\frac{\pi \cdot}{\pi_{0}} A} A d t=\int 3 e^{\frac{1}{a d} t} d t\right. \\
& e^{\frac{1}{100} t} A=300 e^{\frac{1}{100} t}+C \\
& A=300+C e^{\frac{-1}{100} t} \\
& A(0)=300+C=0 \Rightarrow C=-300 \\
& A=300-300 e^{\frac{-1}{\omega 10} t}
\end{aligned}
$$

(4) An LRC series circuit with inductance 1 h , resistance 10 ohms, and capacitance $\frac{1}{125} \mathrm{f}$ exhibits free electrical vibrations (i.e. there is no implied force). If the initial charge on the capacitor $q(0)=0 \mathrm{C}$ and the initial current $i(0)=10 \mathrm{~A}$, find the charge $q(t)$ on the capacitor for $t>0$.

$$
\begin{aligned}
& L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E \\
& q^{\prime \prime}+10 q^{\prime}+125 q=0 \quad \gamma^{\prime}(0)=0, \quad q^{\prime}(0)=10 \\
& m^{2}+10 m+125=0 \\
& m^{2}+10 m+25+100=0 \Rightarrow(m+5)^{2}=-100 \\
& m=-5 \pm 10 i \\
& \gamma(t)=c_{1} e^{-5 t} \cos (10 t)+c_{2} e^{-5 t} \sin (10 t) \\
& \delta^{\prime}=-5 c_{1} e^{-5 t} \cos 10 t-10 c_{1} e^{-5 t} \sin 10 t-5 c_{2} e^{-5 t} \sin 10 t+10 c_{2} e^{-5 t} \cos (10 t) \\
& \gamma(0)=C_{1}=0 \\
& q^{\prime}(0)=10 C_{2}=10 \quad \Rightarrow C_{2}=1 \\
& q(t)=e^{-5 t} \sin 10 t
\end{aligned}
$$

(5) Consider the second order nonhomogeneous equation $y^{\prime \prime}+4 y=g(x)$. For each possible function g, determine the form of the particular solution when using the method of undetermined coefficients. Do not solve for any coefficients A, B, etc.

$$
\begin{aligned}
y^{\prime \prime}+4 y=0 \Rightarrow & m^{2}+4=0 \quad m= \pm 20 \\
& y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x
\end{aligned}
$$

(a) $g(x)=x \cos (2 x)$

$$
y_{p}=[(A x+B) \cos 2 x+(C x+D) \sin 2 x] x
$$

(b) $g(x)=x e^{x}$

$$
y_{p}=(A x+B) e^{x}
$$

(c) $g(x)=3 \sin (2 x)-\cos (\pi x)$

$$
y_{p}=(A \sin (2 x)+B \cos 2 x) x+C \cos \pi x+D \sin \pi x
$$

(6) Solve the initial value problem using any applicable technique.

$$
\begin{array}{cc}
y^{\prime \prime}-y^{\prime}-2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-4 \\
m^{2}-m-2=0 \Rightarrow & (m-2)(m+1)=0 \quad m=2 \text { or } m=-1 \\
y=c_{1} e^{2 x}+c_{2} e^{-x} & c_{1}+c_{2}=1 \\
y^{\prime}(x)=2 c_{1} e^{2 x}-c_{2} e^{-x} & 2 c_{1}-c_{2}=-4 \\
3 c_{1}=-3 \\
c_{2}=1-c_{1}=2
\end{array} c_{1}=-1
$$

(7) Solve the initial value problem.

$$
\begin{aligned}
& \begin{array}{l}
\frac{d x}{d t}=-3 x+4 y \\
\frac{d y}{d t}=x
\end{array} \\
& x(0)=-3 \\
& y(0)=2 \\
& (D+3) x-4 y=0 \\
& \left(D^{2}+3 D\right) x-4 D y=0 \\
& -x+D y=0 \\
& -4 x+40 y=0 \\
& \left(D^{2}+3 D-4\right) x=0 \\
& m^{2}+3 m-4=(m+4)(m-1)=0 \Rightarrow m=-4 \text { or } m=1 \\
& x=c_{1} e^{-4 x}+c_{2} e^{x} \\
& D_{j}=x \quad \Rightarrow \quad y=\frac{-1}{4} c_{1} e^{-4 x}+c_{2} e^{x} \\
& \left.\begin{array}{l}
x(0)=-3=c_{1}+c_{2} \\
y(0)=2=\frac{-1}{4} c_{1}+c_{2}
\end{array}\right\} \Rightarrow \quad-5=\frac{5}{4} c_{1} \Rightarrow c_{1}=-4 \\
& c_{2}=-3-c_{1}=1 \\
& -\frac{1}{4} c_{1}=1 \\
& x=-4 e^{-4 x}+e^{x} \\
& y=e^{-4 x}+e^{x}
\end{aligned}
$$

(8) Determine the Laplace transform or inverse transform as indicated.
(a) $\mathscr{L}\left\{\cos (\pi t)+e^{t} \sin t\right\}=\frac{s}{s^{2}+\pi^{2}}+\frac{1}{(s-1)^{2}+1}$

$$
\begin{aligned}
& \text { (b) } \mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s+2}\right\}=\mathscr{L}^{-1}\left\{\frac{s-1}{(s-1)^{2}+1}-\frac{7}{(s-1)^{2}+1}\right\} \\
&=e^{x} \cos t-7 e^{t} \sin t \\
& s^{2}-2 s+2=(s-1)^{2}+1
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathscr{L}\{\sin (2 t) \mathscr{U}(t-1)\} & =e^{-s} \mathscr{L}\{\sin (2(t+1))\} \\
& =e^{-s} \mathcal{L}\{\sin 2 t \cos 2+\sin 2 \cos 2 t\} \\
& =e^{-s} \frac{2 \cos 2}{s^{2}+4}+e^{-s} \frac{s \sin 2}{s^{2}+4}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-s-2}\right\}=\mathscr{L}^{-1}\left\{\frac{-2}{s+1}+\frac{3}{s-2}\right\} \\
&=-2 e^{-t}+3 e^{2 t} \\
& \frac{s-8}{(s-2)(s+1)}=\frac{A}{s-2}+\frac{B}{s+1} \Rightarrow s-8=A(s+1)+B(s-2) \\
& s=-1-9=-3 B \Rightarrow B=3 \\
& s=2 \Rightarrow-6=3 A \Rightarrow-2
\end{aligned}
$$

(9) Solve the initial value problem using the method of Laplace transforms.

$$
\begin{aligned}
& y^{\prime \prime}+4 y^{\prime}+4 y=18 t e^{-2 t}, \quad y(0)=0, \quad y^{\prime}(0)=-2 \\
& \mathscr{L}\left\{y^{\prime \prime}+4 y^{\prime}+4 z\right\}=\mathcal{L}\left\{18 t e^{-2 t}\right\} \\
& s^{2} y-s y(0)-y^{\prime}(0)+4(s y-y(0))+4 \varphi=\frac{18}{(s+2)^{2}} \\
& \left(s^{2}+4 s+4\right) Y+2=\frac{18}{(s+2)^{2}} \\
& (s+2)^{2} Y=\frac{18}{(s+2)^{2}}-2 \\
& Y=\frac{18}{(s+2)^{4}}-\frac{2}{(s+2)^{2}} \\
& y(t)=\mathcal{L}^{-1}\{Y(s)\} \\
& =\frac{18}{3!} t^{3} e^{-2 t}-\frac{2}{1!} t e^{-2 t} \\
& y(t)=3 t^{3} e^{-2 t}-2 t e^{-2 t}
\end{aligned}
$$

(10) Find the general solution of the second order homogeneous equation for which one solution is given.

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0, \quad y_{1}(x)=x^{4}
$$

$$
\begin{aligned}
& y^{\prime \prime}-\frac{7}{x} y^{\prime}+\frac{16}{x^{2}} y=0 \quad P(x)=\frac{-7}{x} \\
& y_{2}=u y_{1} \text { when } u=\int \frac{e^{-\int p d x}}{y_{1}^{2}} d x \\
& u=\int \frac{e^{\int \frac{7}{x} d x}}{\left(x^{4}\right)^{2}}=\int \frac{x^{7}}{x^{9}} d x=\int \frac{1}{x} d x=\ln x \\
& y_{2}=x^{4} \ln x
\end{aligned}
$$

$$
y=c_{1} x^{4}+c_{2} x^{4} \ln x
$$

