Feb. 10 Math 2254H sec 015H Spring 2015

Section 7.8: Improper Integrals

Consider the function $f(t) = \frac{1}{t^2}$. Note that this function is never negative.

What is wrong with the following statement?

$$\int_{-2}^{1} \frac{1}{t^2} dt = -\frac{1}{t} \Big|_{-2}^{1} = -\frac{1}{1} - \left(-\frac{1}{-2}\right) = -\frac{3}{2}$$

FTC: Let f be continuous on [a,10] ...

February 9, 2015 1 / 41

イロト イポト イヨト イヨト

Improper Integrals

The integral

$$\int_a^b f(x)\,dx$$

is **improper** if *a* and/or *b* is infinite (i.e. $a = -\infty$, $b = \infty$ or both), or if *f* has an infinite discontinuity at *a*, *b*, or somewhere between them (i.e. the graph of *f* has a vertical asymptote).

The integral **may or may not** have a well defined value. The Fundamental Theorem of Calculus **does not** apply!

4 D K 4 B K 4 B K 4 B K

Type 1:
$$\int_a^{\infty} f(x) \, dx$$
 or $\int_{-\infty}^{b} f(x) \, dx$

Definition: Suppose $\int_{a}^{t} f(x) dx$ exists for every number $t \ge a$. Then

.

$$\int_{a}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \, dx$$

provided the limit exists (as a finite number).

Similarly, if $\int_t^b f(x) dx$ exists for every number $t \le b$. Then

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \, dx$$

provided the limit exists (as a finite number).

E 996

Definition Continued...

In either case, if the limit exists, then the integral is said to be **convergent**. Otherwise, it is **divergent**.

If both limits are infinite, we have

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx$$

for any real c provided both integrals on the right are convergent.

4 D K 4 B K 4 B K 4 B K

Example: Horn of Gabriel 1 0.8 0.5 y 0.6 -1-0.4 -0.5 0.2 0 -0 х

Figure: Consider the region under the curve $f(x) = \frac{1}{x}$ for $1 \le x < \infty$. Let this be rotated about the *x*-axis.

February 9, 2015

5/41

Find the Volume of the Horn of Gabriel

Total Volume

$$V = \int \frac{\pi}{x^2} dx = \lim_{t \to \infty} \int \frac{\pi}{x^2} dx$$

February 9, 2015 6 / 41

• • • • • • • • • • • •

=
$$\lim_{t \to \infty} \frac{-\pi}{X} \Big|_{t}^{t}$$

= $\lim_{t \to \infty} \left[\frac{-\pi}{t} - \frac{-\pi}{T} \right] = \pi$
to be horn has finite volume $V = \pi$
(The integral is convergent,)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ○豆 - のへで

٠

(a)
$$\int_{1}^{\infty} \frac{dx}{x} = \lim_{t \to \infty} \int_{1}^{t} \frac{dx}{x}$$
$$= \lim_{t \to \infty} \lim_{t \to \infty} \lim_{t \to \infty} |x| \int_{1}^{t}$$
$$= \lim_{t \to \infty} \left(\ln |t| - \ln |1| \right) = \infty$$
$$\int_{1}^{\infty} \frac{dx}{x} \quad \text{is divergent.}$$

8/41

$$=\lim_{t\to\infty} (ton'o - ton't) = 0 - (-\frac{\pi}{2}) = \frac{\pi}{2}$$

$$= \lim_{t \to \infty} (ten't - ten'o) = \frac{\pi}{2}$$

Both converge, hence $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$ converges

and

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

February 9, 2015 10 / 41

Determine the values of *p* for which $\int_{1}^{\infty} \frac{dx}{x^{p}}$ converges.

From the previous example, it diverses if
$$p=1$$
.
For $p \neq 1$

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \lim_{t \to \infty} \int_{1}^{t} \frac{dx}{x^{p}}$$

$$= \lim_{t \to \infty} \frac{x^{1-p}}{1-p} \Big|_{t}^{t}$$

- 2

$$=\lim_{t\to\infty}\left(\frac{t}{1-p}-\frac{1}{1-p}\right)=\begin{cases}\frac{1}{p-1}, p>1\\ \infty, p<1\end{cases}$$

February 9, 2015 12 / 41

General Result¹

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \frac{1}{p-1} \quad \text{if } p > 1. \text{ It is divergent if } p \leq 1.$$

¹We'll use this again, so keep it in mind!

3 1 4 3

Type 2: $\int_{a}^{b} f(x) dx$ with f discontinuous

Definition: If *f* is continuous on [a, b) and is discontinuous at *b*, then

$$\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx$$

provided the limit exists (as a finite number).

Similarly, if f is continuous on (a, b] and is discontinuous at a, then

$$\int_a^b f(x) \, dx = \lim_{t \to a^+} \int_t^b f(x) \, dx$$

provided the limit exists (as a finite number).

Again, if the limit exists in either case, the integral is said to be **convergent**. Otherwise it is **divergent**.

If *f* is continuous on [a, b] except at some point *c* in (a, b)—-i.e. it is continuous on $[a, c) \cup (c, b]$, then

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

provided each of the integrals on the right side are convergent.

イロト 不得 トイヨト イヨト 二日

Figure: Area interpretation of improper integral where f has a vertical asymptote at b.

a)
$$\int_{0}^{1} \frac{dx}{\sqrt{x}} = \lim_{t \to 0^{+}} \int_{t}^{1} \frac{dx}{x^{2}} dx$$
$$= \lim_{t \to 0^{+}} \frac{x^{2}}{\sqrt{2}} \int_{t}^{1} \frac{dx}{t^{2}} dx$$
$$= \lim_{t \to 0^{+}} 2\sqrt{1} \frac{x^{2}}{\sqrt{2}} \int_{t}^{1} \frac{dx}{t^{2}} dx$$
$$= \lim_{t \to 0^{+}} 2\sqrt{1} \frac{x^{2}}{\sqrt{2}} \int_{t}^{1} \frac{dx}{t^{2}} dx$$
$$= 2$$

February 9, 2015 17 / 41

э

イロト イヨト イヨト イヨト

The integral converse and has volue Z.

(b)
$$\int_{1}^{2} \frac{dx}{x-2} = \lim_{t \to 2^{-}} \int_{1}^{t} \frac{dx}{x-z}$$
$$= \lim_{t \to 2^{-}} \int_{1}^{t} \frac{dx}{x-z}$$
$$= \lim_{t \to 2^{-}} \int_{1}^{t} |x-z| \int_{1}^{t}$$
$$= \lim_{t \to 2^{-}} \left(\int_{1} |t-2| - \int_{1} |1-2| \right)$$
$$= -\infty$$

February 9, 2015 19 / 41

э

イロト イヨト イヨト イヨト

The integral is divergent.

(c)
$$\int_{0}^{3} \frac{dx}{\sqrt{9-x^{2}}} = \int_{t+3}^{t} \int_{0}^{t} \frac{dx}{\sqrt{9-x^{2}}}$$

$$= \int_{1}^{1} - s_{in} \left(\frac{x}{3}\right)^{t}$$

$$= \int_{1}^{1} - s_{in} \left(\frac{x}{3}\right)^{t}$$

$$= \int_{1}^{1} \left(S_{in}^{-1} \left(\frac{t}{3} \right) - S_{in}^{-1} \left(\frac{0}{3} \right) \right)$$

February 9, 2015 21 / 41

2

イロン イ理 とく ヨン イヨン

$$=$$
 Sin'(1) $=$ $\frac{\pi}{2}$

The integral converses wil value
$$\frac{\pi}{2}$$
.

э

イロト イヨト イヨト イヨト

dh = todx u-lnx * Jluxdx J=X dr- 9x = xenx - Sdx $= \chi ln x - \chi + C$ * l_{1} that l_{1} l_{2} l_{2} l_{2} l_{3} $= \lim_{t \to 0^+} \frac{1}{t} = \lim_{t \to 0^+} -t = 0$ Using l'14 rule <ロ> <週> <週> < 回> < 回> < 回> 、 三

()

February 9, 2015 25 / 41