February 10 Math 3260 sec. 51 Spring 2020

Section 2.1: Matrix Operations

Recall the convenient notaton for a matrix A

$$A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Here each column is a vector \mathbf{a}_j in \mathbb{R}^m . We'll use the additional convenient notation to refer to A by entries

$$A=[a_{ij}].$$

 a_{ij} is the entry in **row** *i* and **column** *j*.

Main Diagonal & Diagonal Matrices

Main Diagonal: The main diagonal consist of the entries *a_{ii}*.

Γ	a 11	a ₁₂	a 13		a _{1n}]	
	a_{21}	a 22	a_{23}		a 2n	
	a 31	a_{22}	a 33		a 3n	
	÷	:	:	·	:	
L	a_{m1}	a_{m2}	a_{m3}		amn	

A **diagonal matrix** is a square matrix m = n for which all entries **not** on the main diagonal are zero.

$$\begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

٠

February 3, 2020

Scalar Multiplication & Matrix Addition

Scalar Multiplication: For $m \times n$ matrix $A = [a_{ij}]$ and scalar *c*

 $cA = [ca_{ii}].$

Matrix Addition: For $m \times n$ matrices $A = [a_{ij}]$ and $B = [b_{ij}]$

$$A+B=[a_{ij}+b_{ij}].$$

イロト 不得 トイヨト イヨト ヨー ろくの February 3, 2020

3/26

The sum of two matrices is only defined if they are of the same size.

Matrix Equality

Matrix Equality: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal provided they are of the same size, $m \times n$, and

$$a_{ij} = b_{ij}$$
 for every $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

In this case, we can write

$$A = B$$
.

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

Evaluate each expression or state why it fails to exist. (a) $3B = 3 \begin{bmatrix} -2 & 4 \\ -7 & 0 \end{bmatrix} = \begin{bmatrix} 3(-2) & 3(4) \\ -3(7) & 3(6) \end{bmatrix}$ $= \begin{bmatrix} -6 & 12 \\ -2 & 0 \end{bmatrix}$

.∋⇒

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$
(b) $A + B = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix} = \begin{bmatrix} 1-2 & -3+4 \\ -2+7 & 2+0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & 2 \end{bmatrix}$
(c) $C + A$ Undefined C is $zx = 3$ and A is $zx \geq 2$

They're not the some size.

February 3, 2020 6/26

Theorem: Properties

The $m \times n$ **zero matrix** has a zero in each entry. We'll denote this matrix as O (or $O_{m,n}$ if the size is not clear from the context).

Theorem: Let *A*, *B*, and *C* be matrices of the same size and *r* and *s* be scalars. Then

(i)
$$A + B = B + A$$

(iv) $r(A + B) = rA + rB$
(ii) $(A + B) + C = A + (B + C)$
(v) $(r + s)A = rA + sA$
(iii) $A + O = A$
(vi) $r(sA) = (rs)A$
 $= (sc)A = s(cA)$

February 3, 2020

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "**multiply vectors** in \mathbb{R}^n by A" defines a linear transformation (from \mathbb{R}^n to \mathbb{R}^m).

We wish to define matrix multiplication in such a way as to correspond to **function composition**. Thus if

$$S(\mathbf{x}) = B\mathbf{x}$$
, and $T(\mathbf{v}) = A\mathbf{v}$,

then

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}.$$

February 3, 2020

Matrix Multiplication

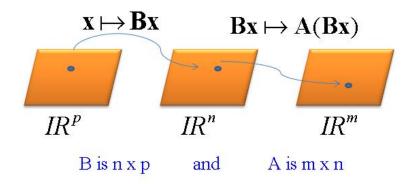


Figure: Composition requires the number of rows of *B* match the number of columns of *A*. Otherwise the product is **not defined**.

February 3, 2020

Matrix Multiplication

$$S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} \implies B \sim n \times p$$

$$T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \implies A \sim m \times n$$

$$T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} \implies AB \sim m \times p$$

$$B\mathbf{x} = x_{1}\mathbf{b}_{1} + x_{2}\mathbf{b}_{2} + \dots + x_{p}\mathbf{b}_{p} \Longrightarrow$$

$$A(B\mathbf{x}) = x_{1}A\mathbf{b}_{1} + x_{2}A\mathbf{b}_{2} + \dots + x_{p}A\mathbf{b}_{p} \Longrightarrow$$

$$AB = [A\mathbf{b}_{1} \quad A\mathbf{b}_{2} \quad \dots \quad A\mathbf{b}_{p}]$$
The *j*th column of *AB* is *A* times the *j*th column of *B*.

February 3, 2020 10/26

P

Example

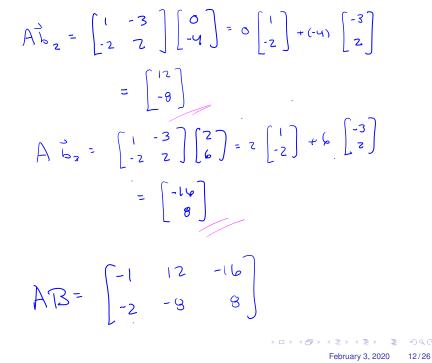
Compute the product AB where

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

Is AB defined?
AB
$$x = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

$$AB = \begin{bmatrix} A\overline{b}, & A\overline{b}, & A\overline{b}_3 \end{bmatrix}$$
$$A\overline{b}_1 = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

◆□> ◆圖> ◆理> ◆理> 三連



Row-Column Rule for Computing the Matrix Product If $AB = C = [c_{ij}]$, then

$$c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}.$$

(The *ij*th entry of the product is the *dot* product of *i*th row of *A* with the j^{th} column of *B*.)

For example:
$$AB = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix} =$$

 C_{11} use row 1 of A and column 1 of \mathbb{Z}
 $C_{11} = \lfloor (2) + (-3)(1) = -1$

February 3, 2020

 $\begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{vmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$ C12 Use now 1 of A column 2 of B $C_{12} = |(0) + (-3)(-4) = 12$ use now 1 of A column 3 of 13 C ... $C_{13} = |(2) + (-3)(6) = -16$ C21 Use row 2 of A and Column 1 of B $C_{21} = -2(2) + 2(1) = -2$

$$C_{22} \quad (x_{2} \quad row \ 2 \text{ of } A \quad ad \quad Ghmn \ 2 \text{ of } B$$

$$C_{22} = -2(0) + (2)(-4) = -8$$

$$C_{23} \quad (x_{2} \quad row \ 2 \text{ of } A \quad ad \quad Ghmn \ 3 \text{ of } B$$

$$C_{23} = -2(2) + 2(6) = 8$$

$$.$$

$$AB = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 8 \end{bmatrix}$$

February 3, 2020 15/26

9 Q (?

・ロト ・個ト ・ヨト ・ヨト 一里

Theorem: Properties-Matrix Product

Let *A* be an $m \times n$ matrix. Let *r* be a scalar and *B* and *C* be matrices for which the indicated sums and products are defined. Then

February 3, 2020

17/26

(i)
$$A(BC) = (AB)C$$

(ii)
$$A(B+C) = AB + AC$$

(iii)
$$(B+C)A = BA + CA$$

(iv) r(AB) = (rA)B = A(rB), and

(v)
$$I_m A = A = A I_n$$

(1) Matrix multiplication **does not** commute! In general $AB \neq BA$

(2) The zero product property **does not** hold! That is, if AB = O, one **cannot** conclude that one of the matrices A or B is a zero matrix.

(3) There is no *cancelation law*. That is, AB = CB **does not** imply that *A* and *C* are equal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Compute AB and BA where
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.
A B B A
 $2 \times 2 \ 2 \times$

February 3, 2020 19/26

(日) (월) (문) (문) (문)