February 10 Math 3260 sec. 55 Spring 2020

Section 2.1: Matrix Operations

Recall the convenient notaton for a matrix A

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

Here each column is a vector \mathbf{a}_{j} in \mathbb{R}^{m}. We'll use the additional convenient notation to refer to A by entries

$$
A=\left[a_{i j}\right] .
$$

$a_{i j}$ is the entry in row i and column j.

Main Diagonal \& Diagonal Matrices

Main Diagonal: The main diagonal consist of the entries $a_{i j}$.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{22} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]
$$

A diagonal matrix is a square matrix $m=n$ for which all entries not on the main diagonal are zero.

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Scalar Multiplication \& Matrix Addition

Scalar Multiplication: For $m \times n$ matrix $A=\left[a_{i j}\right]$ and scalar c

$$
c A=\left[c a_{i j}\right]
$$

Matrix Addition: For $m \times n$ matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$

$$
A+B=\left[a_{i j}+b_{i j}\right]
$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality

Matrix Equality: Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal provided they are of the same size, $m \times n$, and

$$
a_{i j}=b_{i j} \text { for every } i=1, \ldots, m \text { and } j=1, \ldots, n .
$$

In this case, we can write

$$
A=B .
$$

Example

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & 4 \\
7 & 0
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

Evaluate each expression or state why it fails to exist.
(a) $3 B=3\left[\begin{array}{cc}-2 & 4 \\ 7 & 0\end{array}\right]=\left[\begin{array}{cc}3(-2) & 3(4) \\ 3(7) & 3(0)\end{array}\right]=\left[\begin{array}{cc}-6 & 12 \\ 21 & 0\end{array}\right]$

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & 4 \\
7 & 0
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

(b)

$$
\begin{aligned}
& A+B=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]+\left[\begin{array}{cc}
-2 & 4 \\
7 & 0
\end{array}\right]=\left[\begin{array}{cc}
1-2 & -3+4 \\
-2+7 & 2+0
\end{array}\right] . \\
&=\left[\begin{array}{cc}
-1 & 1 \\
5 & 2
\end{array}\right]
\end{aligned}
$$

(c) $C+A$ Undefined, C is 2×3 and A is 2×2 they'ie not the same size.

Theorem: Properties

The $m \times n$ zero matrix has a zero in each entry. We'll denote this matrix as O (or $O_{m, n}$ if the size is not clear from the context).

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then
(i) $A+B=B+A$

$$
\begin{aligned}
& \text { (iv) } r(A+B)=r A+r B \\
& \text { (v) }(r+s) A=r A+s A \\
& \text { (vi) } r(s A)=(r s) A \\
& =(s r) A=s(r A)
\end{aligned}
$$

(ii) $(A+B)+C=A+(B+C)$

$$
\text { (iii) } A+O=A
$$

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "multiply vectors in \mathbb{R}^{n} by $A^{\prime \prime}$ defines a linear transformation (from \mathbb{R}^{n} to \mathbb{R}^{m}).

We wish to define matrix multiplication in such a way as to correspond to function composition. Thus if

$$
S(\mathbf{x})=B \mathbf{x}, \quad \text { and } \quad T(\mathbf{v})=A \mathbf{v}
$$

then

$$
(T \circ S)(\mathbf{x})=T(S(\mathbf{x}))=A(B \mathbf{x})=(A B) \mathbf{x}
$$

Matrix Multiplication

Figure: Composition requires the number of rows of B match the number of columns of A. Otherwise the product is not defined.

Matrix Multiplication

$$
\begin{align*}
S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} & \Longrightarrow B \sim n \times p \\
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} & \Longrightarrow A \sim m \times n \\
T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} & \Longrightarrow \quad A B \sim m \times p
\end{align*}
$$

$B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \Longrightarrow$
$A(B \mathbf{x})=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p} \Longrightarrow$

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

The $j^{\text {th }}$ column of $A B$ is A times the $j^{\text {th }}$ column of B.

Example
Compute the product $A B$ where

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

$A B$

$$
\begin{aligned}
& \left.\begin{array}{llll}
2 \times 2 & 2 \times 3 \\
A \vec{b}_{1} & A \vec{b}_{2} & A \vec{b}_{3}
\end{array}\right] \\
& 112 \times 3 \\
& A \vec{b}_{1}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2-3 \\
-4+2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2
\end{array}\right] \\
& A \vec{b}_{2}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{c}
0 \\
-4
\end{array}\right]=\left[\begin{array}{c}
12 \\
-8
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
A \vec{b}_{3}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]=\left[\begin{array}{c}
-16 \\
8
\end{array}\right] \\
A B=\left[\begin{array}{ccc}
-1 & 12 & -16 \\
-2 & -3 & 8
\end{array}\right]
\end{gathered}
$$

Row-Column Rule for Computing the Matrix Product

 If $A B=C=\left[c_{i j}\right]$, then$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

(The $i j^{\text {th }}$ entry of the product is the dot product of $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.)

For example: $\quad A B=\left[\begin{array}{cc}1 & -3 \\ -2 & 2\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 2 \\ 1 & -4 & 6\end{array}\right]=\left[\begin{array}{lll}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23}\end{array}\right]$
C_{11} : Use row 1 of A and Column 1 of B

$$
c_{11}=1(2)+(-3)(1)=-1
$$

C_{2}, use row 2 of A and Column 1 of B $c_{21}=-2(2)+2(1)=-2$

$$
\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

C_{12} row 1 of A column 2 of B

$$
c_{12}=1(8)+(-3)(-4)=12
$$

L_{22} row 2 of A column 2 of B

$$
c_{22}=-2(0)+2(-4)=-8
$$

C_{13} row 1 of A column 3 of B

$$
c_{13}=1(2)+(-3)(6)=-16
$$

C_{23} row 2 of A column 3 of B

$$
c_{23}=-2(2)+2(6)=8
$$

$$
A B=\left[\begin{array}{ccc}
-1 & 12 & -16 \\
-2 & -8 & 8
\end{array}\right] .
$$

Theorem: Properties-Matrix Product

Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then
(i) $A(B C)=(A B) C$
(ii) $A(B+C)=A B+A C$
(iii) $(B+C) A=B A+C A$
(iv) $r(A B)=(r A) B=A(r B)$, and
(v) $I_{m} A=A=A I_{n}$

Caveats!

(1) Matrix multiplication does not commute! In general $A B \neq B A$
(2) The zero product property does not hold! That is, if $A B=O$, one cannot conclude that one of the matrices A or B is a zero matrix.
(3) There is no cancelation law. That is, $A B=C B$ does not imply that A and C are equal.

Compute $A B$ and $B A$ where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$.

$$
\begin{aligned}
& \left.\begin{array}{c}
A B \\
2 \times 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
-3 & 6
\end{array}\right] \\
& 2 \times 2 \quad 2 \times 2 \\
& \underbrace{\text { match }}_{2 \times 2} \uparrow
\end{aligned}
$$

Compute the products $A B, C B$, and $B B$ where $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$,

$$
\begin{aligned}
& B=\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right], \text { and } C=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] . \\
& B B=\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \begin{array}{l}
B B=O_{2 \times 2} \\
B \neq 0 . \\
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] \quad \begin{array}{l}
A B=C B \\
b u r
\end{array} \\
C B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] \quad A \neq C
\end{array} .
\end{aligned}
$$

