February 10 Math 3260 sec. 55 Spring 2020

Section 2.1: Matrix Operations

Recall the convenient notation for a matrix A

$$A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Here each column is a vector \mathbf{a}_i in \mathbb{R}^m . We'll use the additional convenient notation to refer to A by entries

$$A=[a_{ij}].$$

 a_{ii} is the entry in **row** *i* and **column** *j*.

Main Diagonal & Diagonal Matrices

Main Diagonal: The main diagonal consist of the entries a_{ii} .

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{22} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}.
```

A **diagonal matrix** is a square matrix m = n for which all entries **not** on the main diagonal are zero.

$$\begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

Scalar Multiplication & Matrix Addition

Scalar Multiplication: For $m \times n$ matrix $A = [a_{ij}]$ and scalar c $cA = [ca_{ii}].$

Matrix Addition: For
$$m \times n$$
 matrices $A = [a_{ij}]$ and $B = [b_{ij}]$

$$A+B=[a_{ij}+b_{ij}].$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality

Matrix Equality: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal provided they are of the same size, $m \times n$, and

$$a_{ij} = b_{ij}$$
 for every $i = 1, \dots, m$ and $j = 1, \dots, n$.

In this case, we can write

$$A = B$$
.

Example

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

Evaluate each expression or state why it fails to exist.

(a)
$$3B = 3\begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix} = \begin{bmatrix} 3(-2) & 3(4) \\ 3(7) & 3(8) \end{bmatrix} = \begin{bmatrix} -6 & 12 \\ z_1 & 0 \end{bmatrix}$$

5/26

$$A = \left[\begin{array}{cc} 1 & -3 \\ -2 & 2 \end{array} \right], \quad B = \left[\begin{array}{cc} -2 & 4 \\ 7 & 0 \end{array} \right], \quad \text{and} \quad C = \left[\begin{array}{cc} 2 & 0 & 2 \\ 1 & -4 & 6 \end{array} \right]$$

(b)
$$A + B = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix} = \begin{bmatrix} 1-2 & -3+4 \\ -2+7 & 2+0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1 \\ 5 & 2 \end{bmatrix}$$

Theorem: Properties

The $m \times n$ **zero matrix** has a zero in each entry. We'll denote this matrix as O (or $O_{m,n}$ if the size is not clear from the context).

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then

(i)
$$A + B = B + A$$

(iv)
$$r(A+B) = rA + rB$$

(ii)
$$(A + B) + C = A + (B + C)$$

$$(\mathsf{v})\;(r+s)\mathsf{A}=r\mathsf{A}+s\mathsf{A}$$

(iii)
$$A + O = A$$

(vi)
$$r(sA) = (rs)A$$

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "multiply vectors in \mathbb{R}^n by A" defines a linear transformation (from \mathbb{R}^n to \mathbb{R}^m).

We wish to define matrix multiplication in such a way as to correspond to **function composition**. Thus if

$$S(\mathbf{x}) = B\mathbf{x}$$
, and $T(\mathbf{v}) = A\mathbf{v}$,

then

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}.$$

Matrix Multiplication

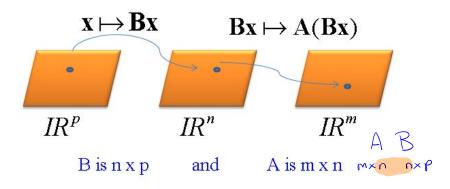


Figure: Composition requires the number of rows of *B* match the number of columns of *A*. Otherwise the product is **not defined**.

Matrix Multiplication

$$S: \mathbb{R}^p \longrightarrow \mathbb{R}^n \quad \Longrightarrow \quad B \sim n \times p$$

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m \quad \Longrightarrow \quad A \sim m \times n$$

$$T \circ S: \mathbb{R}^p \longrightarrow \mathbb{R}^m \quad \Longrightarrow \quad AB \sim m \times p$$

$$B\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_p \mathbf{b}_p \Longrightarrow$$

 $A(B\mathbf{x}) = x_1 A \mathbf{b}_1 + x_2 A \mathbf{b}_2 + \dots + x_p A \mathbf{b}_p \Longrightarrow$

$$AB = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_p]$$

The j^{th} column of AB is A times the j^{th} column of B.

Example

Compute the product AB where

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

AB
$$z \times z \times z \times 3$$

$$AB = \begin{bmatrix} Ab_1 & Ab_2 & Ab_3 \end{bmatrix}$$

$$x \times z \times z \times 3$$

$$x \times z \times z \times 3$$

$$AB = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2-3 \\ -4+2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$Ab_3 = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ -4 \end{bmatrix} = \begin{bmatrix} 12 \\ -8 \end{bmatrix}$$

$$Ab_3 = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \begin{bmatrix} -16 \\ 8 \end{bmatrix}$$

$$AB = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 8 \end{bmatrix}$$

Row-Column Rule for Computing the Matrix Product If $AB = C = [c_{ii}]$, then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

(The ij^{th} entry of the product is the *dot product* of i^{th} row of A with the j^{th} column of B.)

For example:
$$AB = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \end{bmatrix}$$

$$C_{11}$$
: Use row 1 of A and Glum 1 of \overline{B}

$$C_{11} = 1(z) + (-3)(1) = -1$$

$$C_{21} = -2(z) + 2(1) = -2$$

February 3, 2020 13/26

$$\begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

$$C_{12} \quad \text{row } 1 \text{ of } A \quad \text{column } 2 \text{ d} 3$$

$$C_{12} = 1(6) + (-3)(-4) = 12$$
 $C_{12} = 1(6) + (-3)(-4) = 12$
 $C_{12} = -2(6) + 2(-4) = -8$
 $C_{13} = -2(6) + 2(-4) = -8$
 $C_{13} = -2(6) + 2(-4) = -8$

$$C_{13} = 1(2) + (-3)(6) = -16$$

$$C_{23} = -2(2) + 2(6) = 8$$

$$\widehat{+} \widehat{I} = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 8 \end{bmatrix}.$$

Theorem: Properties-Matrix Product

Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then

(i)
$$A(BC) = (AB)C$$

(ii)
$$A(B+C) = AB + AC$$

(iii)
$$(B+C)A = BA + CA$$

(iv)
$$r(AB) = (rA)B = A(rB)$$
, and

(v)
$$I_m A = A = A I_n$$

Caveats!

(1) Matrix multiplication **does not** commute! In general $AB \neq BA$

(2) The zero product property **does not** hold! That is, if AB = O, one **cannot** conclude that one of the matrices A or B is a zero matrix.

(3) There is no *cancelation law*. That is, AB = CB does not imply that A and C are equal.

Compute AB and BA where $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.

February 3, 2020 19/26

Compute the products *AB*, *CB*, and *BB* where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$,

$$B = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$$
, and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$BB = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad BB = 0_{2\times 1}$$

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} AB = CB$$

$$CB = \begin{bmatrix} 0 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$$