February 11 MATH 1112 sec. 54 Spring 2019

Summary of Log Properties

Assume each expression is well defined.
(i) Change of base: $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$
(ii) \log of Product: $\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)$
(iii) Log of Power: $\log _{a}\left(M^{p}\right)=p \log _{a}(M)$
(iv) Log of Quotient: $\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)$
(v) Inverse Function: $a^{\log _{a}(x)}=x$ and $\log _{a}\left(a^{x}\right)=x$
(vi) Special Values: $\log _{a}(1)=0, \log _{a}(a)=1$, and $\log _{a}(0)$ is never defined.

Section 5.5: Solving Exponential and Logarithmic Equations

We can solve equations involving logs and exponentials by making use of the following.

Base-Exponent Equality For any $a>0$ with $a \neq 1$, and for any real numbers x and y

$$
a^{x}=a^{y} \quad \text { if and only if } \quad x=y
$$

Solving Exponential and Logarithmic Equations

Logarithm Equality For and $a>0$ with $a \neq 1$, and for any positive numbers x and y

$$
\log _{a} x=\log _{a} y \quad \text { if and only if } \quad x=y
$$

Solving Exponential and Logarithmic Equations

Inverse Function For any $a>0$ with $a \neq 1$

$$
\begin{gathered}
a^{\log _{a} x}=x \quad \text { for every } \quad x>0 \\
\log _{a}\left(a^{x}\right)=x \quad \text { for every real } x
\end{gathered}
$$

Example
Solve the equation $3^{2 x+1}=81$. Show that the same result is obtained by two approaches
(a) by using the fact that $81=3^{4}$ and equating exponents,

$$
\begin{aligned}
3^{2 x+1} & =81 & \text { use } 81=3^{4} \\
& =3^{4} & \text { use } a^{x}=a^{5} \text { means } x=y \\
2 x+1 & =4 & \\
2 x & =3 & \text { quick checker: } \\
x & =\frac{3}{2} & 3^{2\left(\frac{3}{2}\right)+1}=3^{3+1}=3^{4}=81
\end{aligned}
$$

Example
Solve the equation $3^{2 x+1}=81$. Show that the same result is obtained by two approaches
(b) by using the base 3 logarithm as an inverse function.

$$
\begin{array}{rlrl}
3^{2 x+1} & =81 & \text { Take log base } 3 \\
\log _{3}\left(3^{2 x+1}\right) & =\log _{3}(81) & \log _{a}\left(a^{z}\right)=z \\
2 x+1 & =4 & 3=81 & \text { so } \log _{3}(81)=4 \\
2 x & =3 \\
x & =\frac{3}{2} &
\end{array}
$$

Example
Find an exact solution ${ }^{1}$ to the equation $2^{x+1}=5^{x} \quad$ Let's use the natural log. Well get the x 's out of the exponents

$$
\begin{array}{ll}
\ln \left(2^{x+1}\right)=\ln \left(S^{x}\right) & \text { Take a log of both } \\
\text { sides } \\
(x+1) \ln 2=x \ln 5 & \log _{a}\left(M^{r}\right)=r \log _{a} M \\
x \ln 2+1 \ln 2=x \ln 5 & \text { Solve for } x
\end{array}
$$

${ }^{1}$ An exact solution may be a number such as $\sqrt{2}$ or $\ln (7)$ which requires a calculator to approximate as a decimal.

$$
\begin{array}{r}
\ln 2=x \ln 5-x \ln 2 \\
\ln 2=x(\ln 5-\ln 2) \\
x=\frac{\ln 2}{\ln 5-\ln 2}
\end{array}
$$

Graphical Solution to $2^{x+1}=5^{x}$

Figure: Plots of $y=2^{x+1}$ and $y=5^{x}$ together. The curves intersect at the solution $x=\ln 2 /(\ln 5-\ln 2) \approx 0.7565$.
Which curve is $y=2^{x+1}$, red or blue?

Question

An exact solution to $3^{-x}=4^{x-1}$ can be found using the natural logarithm. An exact solution is
(a) $x=\frac{\ln 4}{\ln 4-\ln 3}$
(b) $x=\frac{\ln 3}{\ln 4-\ln 3}$
(c)) $x=\frac{\ln 4}{\ln 4+\ln 3}$
(d) $x=\frac{\ln 3}{\ln 4+\ln 3}$
(e) I know how to do this, but my answer is not here

