February 11 MATH 1112 sec. 54 Spring 2019 Summary of Log Properties

Assume each expression is well defined.

(i) Change of base: $\log_b(M) = \frac{\log_a(M)}{\log_a(b)}$

(ii) Log of Product: $\log_a(MN) = \log_a(M) + \log_a(N)$

(iii) Log of Power: $\log_a(M^p) = p \log_a(M)$

(iv) Log of Quotient: $\log_a \left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$

(v) Inverse Function: $a^{\log_a(x)} = x$ and $\log_a(a^x) = x$

(vi) Special Values: $\log_a(1) = 0$, $\log_a(a) = 1$, and $\log_a(0)$ is never defined.

February 8, 2019 1 / 26

Section 5.5: Solving Exponential and Logarithmic Equations

We can solve equations involving logs and exponentials by making use of the following.

Base-Exponent Equality For any a > 0 with $a \neq 1$, and for any real numbers *x* and *y*

$$a^x = a^y$$
 if and only if $x = y$.

February 8, 2019

2/26

Solving Exponential and Logarithmic Equations

Logarithm Equality For and a > 0 with $a \neq 1$, and for any positive numbers *x* and *y*

$$\log_a x = \log_a y$$
 if and only if $x = y$.

February 8, 2019 3 / 26

イロト 不得 トイヨト イヨト 二日

Solving Exponential and Logarithmic Equations

Inverse Function For any a > 0 with $a \neq 1$

$$a^{\log_a x} = x$$
 for every $x > 0$
 $\log_a(a^x) = x$ for every real x .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Example

Solve the equation $3^{2x+1} = 81$. Show that the same result is obtained by two approaches

(a) by using the fact that $81 = 3^4$ and equating exponents,

$$3^{2x+1} = 81 \qquad \text{use} \qquad 81=3^{4}$$

$$= 3^{4} \qquad \text{use} \qquad \alpha^{x} = \alpha^{5} \qquad \text{means} \qquad x=7$$

$$3^{x+1} = 4$$

$$3^{x} = 3 \qquad 3^{y} \qquad 3^{y} = 3 = 3 = 81$$

Example

Solve the equation $3^{2x+1} = 81$. Show that the same result is obtained by two approaches

(b) by using the base 3 logarithm as an inverse function.

$$3^{2xr1} = 81$$
Toke Dog base 3
$$log_{3} \left(3^{2x+1}\right) = log_{3}(81)$$

$$log_{2x}(a^{2}) = 7$$

$$log_{3}(a^{2}) = 7$$

$$3^{4} = 81 \text{ so } log_{3}(81) = 4$$

$$2x = 3$$

$$x = \frac{3}{2}$$

< ロ > < 同 > < 回 > < 回 >

Example

Find an exact solution¹ to the equation Let's use the natural log. We'll get the $2^{x+1} = 5^x$ x's out of the exponents Take alog of both sides $\int_{n} \left(Z^{X+1} \right) = \int_{n} \left(S^{X} \right)$ $(x+1) \ln 2 = x \ln 5$ logo (Mr) = r loga M Solve for x X Juz + 1 luz = x Jus

¹An exact solution may be a number such as $\sqrt{2}$ or In(7) which requires a calculator to approximate as a decimal.

Inz = x Ins - x Inz $\ln z = \chi(\ln S - \ln Z)$ $X = \frac{\ln 2}{\ln 5 - \ln 2}$

<ロ> <四> <四> <四> <四> <四</p>

Graphical Solution to $2^{x+1} = 5^x$

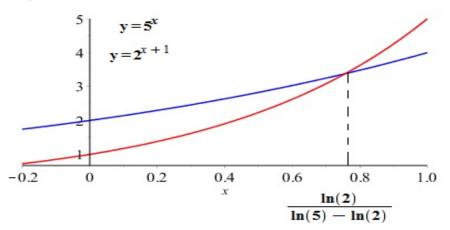


Figure: Plots of $y = 2^{x+1}$ and $y = 5^x$ together. The curves intersect at the solution $x = \ln 2/(\ln 5 - \ln 2) \approx 0.7565$. Which curve is $y = 2^{x+1}$, red or blue?

February 8, 2019 9 / 26

Question

An exact solution to $3^{-x} = 4^{x-1}$ can be found using the natural logarithm. An exact solution is

(a)
$$x = \frac{\ln 4}{\ln 4 - \ln 3}$$

(b) $x = \frac{\ln 3}{\ln 4 - \ln 3}$
(c) $x = \frac{\ln 4}{\ln 4 + \ln 3}$
(d) $x = \frac{\ln 3}{\ln 4 + \ln 3}$

(e) I know how to do this, but my answer is not here

< 日 > < 同 > < 回 > < 回 > < 回 > <

February 8, 2019

10/26