February 11 Math 2306 sec. 54 Spring 2019

Section 5: First Order Equations Models and Applications
A Classic Mixing Problem If we are tracking the amount A of some substance (e.g. salt) disolved in some fluid in which we know the flow rates at which fluid is entering $\left(r_{i}\right)$ and leaving $\left(r_{0}\right)$ a receptacle, the initial volume $V(0)$ of fluid, and the substance concentration of the inflow c_{i}, then for a well mixed solution

$$
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{0} \frac{A}{V} .
$$

Here $V(t)=V(0)+\left(r_{i}-r_{0}\right) t$. This equation is first order linear

$$
\frac{d A}{d t}+\frac{r_{0}}{V} A=r_{i} c_{i}
$$

There is nothing precluding one of the coefficeints such as r_{o}, r_{i} or c_{i} from being a nonconstant function of time.

Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

We determined that
$r_{i}=5 \mathrm{gal} / \mathrm{min}, c_{i}=2 \mathrm{lb} / \mathrm{gal}, r_{0}=5 \mathrm{gal} / \mathrm{min},, V(0)=500 \mathrm{gal}$,
$A(0)=0$, and $c_{0}=\frac{A}{500} . \quad V(t)=500+(5-5) t=500$

$$
\frac{d A}{d t}+r_{0} c_{0}=r_{i} c_{i}
$$

$$
\begin{aligned}
& \frac{d A}{d t}+S\left(\frac{A}{500}\right)=5 \cdot 2 \quad A(0)=0 \\
& \frac{d A}{d t}+\frac{1}{100} A=10 \quad P(t)=\frac{1}{100} \\
& \mu=e^{\int \frac{1}{100} d t}=e^{\frac{1}{100} t} \\
& \frac{d}{d t}\left(e^{\frac{1}{100} t} A\right)=10 e^{\frac{1}{100} t} \\
& e^{\frac{1}{100} t} A=\int 10 e^{\frac{1}{100} t} d t \\
&=10(100) e^{\frac{1}{100} t}+k
\end{aligned}
$$

$$
A=1000+k e^{-\frac{1}{100} t}
$$

Apply $A(0)=0$

$$
\begin{aligned}
A(0)=1000+k e^{0} & =0 \\
1000+k & =0 \Rightarrow k=-1000
\end{aligned}
$$

The amount of set at time t is

$$
A(t)=1000-1000 e^{\frac{-1}{100} t}
$$

The concentration in the take C is

$$
C(t)=\frac{A(t)}{V(t)}=\frac{1000-1000 e^{\frac{-1}{100} t}}{500} \frac{1 b}{g d}
$$

At $t=5$ minutes

$$
\begin{aligned}
& t=S \text { minutes } \\
& C(S)=\frac{1000-1000 e^{\frac{-1}{100} \cdot s}}{500} \approx 0.0975 \quad \frac{1 b}{\delta a}
\end{aligned}
$$

Noble that in the long run the Concentration

$$
\begin{aligned}
\lim _{t \rightarrow \infty} C(t) & =\lim _{t \rightarrow \infty} \frac{1000-1000 e^{-\frac{1}{100} t}}{500} \\
& =\frac{1000}{500}=2 \frac{1 b}{5 a l}
\end{aligned}
$$

$$
r_{i} \neq r_{o}
$$

Suppose that instead, the mixture is pumped out at $10 \mathrm{gal} / \mathrm{min}$. Determine the differential equation satisfied by $A(t)$ under this new condition.

$$
\begin{gathered}
r_{i}=S \frac{\mathrm{gd}}{\min } \quad C_{i}=2 \frac{16}{50 \mathrm{sel}} \quad r_{0}=10 \frac{\mathrm{gd}}{\mathrm{~min}} \\
V(t)=V(0)+\left(r_{i}-r_{0}\right) t=500+(5-10) t=500-5 t \\
c_{0}=\frac{A}{V}=\frac{A}{500-5 t} \\
\frac{d A}{d t}+r_{0} c_{0}=r_{i} C_{i}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d A}{d t}+10\left(\frac{A}{500-5 t}\right)=5 \cdot 2 \\
& \frac{d A}{d t}+\frac{2}{100-t} A=10
\end{aligned}
$$

This is only valid for $0<t<10^{\circ}$. Note that $V(100)=500-s(100)=0$. The volume is zero (tank is empty) at 100 minuter.

A Nonlinear Modeling Problem

A population $P(t)$ of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity ${ }^{1} M$ of the environment and the current population. Determine the differential equation satsified by P.
rate of change $\frac{d P}{d t}$ is proportional to P and proportion to $M-P$.

$$
\begin{aligned}
& \frac{d P}{d t}=k P(M-P) \quad \text { for some constant of } \\
& \text { proportionality } k .
\end{aligned}
$$

${ }^{1}$ The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

Logistic Differential Equation
The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation ${ }^{2}$ and show that for any $P(0) \neq 0, P \rightarrow M$ as $t \rightarrow \infty$.
Let $P(0)=P_{0}$. The ODE is separable

$$
\begin{aligned}
& \frac{d P}{d t}=k P(M-P) \Rightarrow \frac{1}{P(m-P)} \frac{d P}{d t}=k \\
& \int \frac{1}{P(m-P)} d P=\int k d t
\end{aligned}
$$

${ }^{2}$ The partial fraction decomposition

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

is useful.

$$
\begin{aligned}
\int \frac{1}{m}\left(\frac{1}{P}+\frac{1}{m-P}\right) d \rho & =\int k d t \\
\int\left(\frac{1}{P}+\frac{1}{m-P}\right) d P & =\int k M d t \\
\ln |P|-\ln |m-P| & =k M t+C \\
\ln \left|\frac{P}{M-P}\right| & =k M t+C \\
\frac{P}{M-P} & =A C^{k M t}
\end{aligned}
$$

where

$$
A=e^{c} \text { or } A=-e^{c}
$$

Using $P(0)=P_{0} \quad \frac{P_{0}}{M-P_{0}}=A e^{\circ} \Rightarrow A=\frac{P_{0}}{M-P_{0}}$

Solve for P

$$
\begin{aligned}
& P=A e^{k M t}(M-P) \\
&=A M e^{k m t}-A P e^{k m t} \\
& P+A P e^{k m t}=A M e^{k m t} \\
&\left(1+A e^{k m t}\right) P=A M e^{k m t}
\end{aligned}
$$

$$
\begin{aligned}
& P(t)=\frac{A M e^{k M t}}{1+A e^{k \omega t}} \quad \text { use } A=\frac{P_{0}}{M-P_{0}} \\
& P(t)=\frac{\frac{P_{0}}{M-P_{0}} M e^{k M t}}{1+\frac{P_{0}}{M-P_{0}} e^{k M t}} \cdot\left(\frac{M-P_{0}}{M-P_{0}}\right)^{t \text { clearing }} \text { fractions } \\
& P(t)=\frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k m t}} \\
& \text { Solution to the logistic equation. }
\end{aligned}
$$

For $P_{0} \neq 0$, we take $t \rightarrow \infty$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} P(t) & =\lim _{t \rightarrow \infty} \frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k M t}} \\
& =\lim _{t \rightarrow \infty}\left(\frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k M t}}\right) \cdot\left(\frac{e^{-k m t}}{e^{-k m t}}\right) \\
& =\lim _{t \rightarrow \infty} \frac{P_{0} M}{\left(M-P_{0}\right) e^{-k M t}+P_{0}} \\
& =\frac{P_{0} M}{\left(M-P_{0}\right) \cdot O+P_{0}}=\frac{P_{0} M}{P_{0}}=M
\end{aligned}
$$

