February 11 Math 2306 sec 58 Spring 2016

Section 6: Linear Equations Theory and Terminology
Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval l if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } I .
$$

A set of functions that is not linearly dependent on / is said to be linearly independent on I.

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

well use the Wronstion.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right| \\
& =e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-2 e^{-x}-e^{-x} \\
& =-3 e^{-x}
\end{aligned}
$$

Note that $W\left(y, y_{2}\right)(x)=-3 e^{-x} \neq 0$ hence y_{1} and y_{2} are linearly independent.

* Our $W(x) \neq 0$ for all reed x, but it's sufficient that $W\left(x_{0}\right) \neq 0$ for even one x_{0}.

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ form a fundamental solution set of the ODE

$$
y^{\prime \prime}-y=0 \quad \text { on } \quad(-\infty, \infty)
$$

and determine the general solution.
We have 2 functions for a second arden equation so property (ii) holds.

Let's verify that they ore solutions.

$$
\begin{aligned}
& y_{1}=e^{x} \\
& y_{1}^{\prime}=e_{x}^{x}
\end{aligned}
$$

$$
y_{1}^{\prime \prime}-y_{1}=e^{x}-e^{x}=0
$$

so y is a solution.

$$
\begin{array}{ll}
y_{2}=e^{-x} & y_{2}^{\prime \prime}-y_{2}=e^{-x}-e^{-x}=0 \\
y_{2}^{\prime}=-e^{-x} & y_{2} \text { is also a solution. } \\
y_{2}^{\prime \prime}=e^{-x} &
\end{array}
$$

Property (i) holds.
Check linear dependence independence. Using the Wronskion

$$
w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|
$$

$$
\begin{gathered}
=e^{x}\left(-e^{-x}\right)-e^{x}\left(e^{-x}\right)=-2 \\
W\left(y_{1}, y_{2}\right)(x)=-2 \neq 0
\end{gathered}
$$

Hence y_{1} and y_{2} are linearly independent.
Property (iii) holds. These form a fundomental solution set.
The general solution is $y=c_{1} e^{x}+c_{2} e^{-x}$

Consider $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ for $x>0$

Determine which if any of the following sets of functions is a fundamental solution set.
(a) $y_{1}=2 x^{2}, \quad y_{2}=x^{2} \leftarrow$ linearly dependent note
(b) $y_{1}=x^{2}, \quad y_{2}=x^{-2}$

$$
1 y_{1}-2 y_{2}=0 \text { for all } x \text {. }
$$

(c) $y_{1}=x^{3}, \quad y_{2}=x^{2}$
(d) $y_{1}=x^{2}, \quad y_{2}=x^{3}, \quad y_{3}=x^{-2} \leftarrow$ too mons functions (d) is out.

Does $y=x^{2}$ solve the En?

$$
\begin{array}{ll}
y_{1}=x^{2} & x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1}= \\
y_{1}^{\prime}=2 x & x^{2}(2)-4 x(2 x)+6 x^{2}= \\
y_{1}^{\prime \prime}=2 & 2 x^{2}-8 x^{2}+6 x^{2}=0
\end{array}
$$

yes Solver ob

Does x^{2} solve it?

$$
\begin{aligned}
& y_{2}=x^{-2} \\
& y_{2}^{\prime}=-2 x^{-3} \\
& y_{2}^{\prime \prime}=6 x^{-4}
\end{aligned}
$$

$$
x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2}=
$$

$$
x^{2}\left(6 x^{-4}\right)-4 x\left(-2 x^{-3}\right)+6 x^{-2}=
$$

$$
6 x^{-2}+8 x^{-2}+6 x^{-2}=20 x^{-2} \neq 0
$$

well finish this example next time.

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

