February 11 Math 2306 sec 59 Spring 2016

Section 6: Linear Equations Theory and Terminology

Definition: A set of functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are said to be **linearly dependent** on an interval *I* if there exists a set of constants $c_1, c_2, ..., c_n$ with at least one of them being nonzero such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
 for all x in I.

February 9, 2016 1 / 41

A set of functions that is not linearly dependent on *I* is said to be **linearly independent** on *I*.

Definition of Wronskian

Let $f_1, f_2, ..., f_n$ posses at least n - 1 continuous derivatives on an interval *I*. The **Wronskian** of this set of functions is the determinant

$$W(f_1, f_2, \dots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

.

February 9, 2016

2/41

(Note that, in general, this Wronskian is a function of the independent variable x.)

Theorem (a test for linear independence)

Let f_1, f_2, \ldots, f_n be n-1 times continuously differentiable on an interval *I*. If there exists x_0 in *I* such that $W(f_1, f_2, \ldots, f_n)(x_0) \neq 0$, then the functions are **linearly independent** on *I*.

If $y_1, y_2, ..., y_n$ are *n* solutions of the linear homogeneous n^{th} order equation on an interval *I*, then the solutions are **linearly independent** on *I* if and only if $W(y_1, y_2, ..., y_n)(x) \neq 0$ for¹ each *x* in *I*.

¹For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

Fundamental Solution Set

We're still considering this equation

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)rac{dy}{dx} + a_0(x)y = 0$$

with the assumptions $a_n(x) \neq 0$ and $a_i(x)$ are continuous on *I*.

Definition: A set of functions $y_1, y_2, ..., y_n$ is a **fundamental solution set** of the n^{th} order homogeneous equation provided they

February 9, 2016

4/41

- (i) are solutions of the equation,
- (ii) there are *n* of them, and
- (iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of *n*th order Linear Homogeneous Equation

Let $y_1, y_2, ..., y_n$ be a fundamental solution set of the n^{th} order linear homogeneous equation. Then the **general solution** of the equation is

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),$$

イロン イロン イヨン イヨン

February 9, 2016

5/41

where c_1, c_2, \ldots, c_n are arbitrary constants.

Example

Verify that $y_1 = e^x$ and $y_2 = e^{-x}$ form a fundamental solution set of the ODE

$$y'' - y = 0$$
 on $(-\infty, \infty)$,

and determine the general solution.

Note that there are 2 functions and the ODF is

$$2^{nd}$$
 orden. Property (ii) holds.
Let's verify that they are solutions.
 $y_i = e^{x}$
 $y_i'' = e^{x}$
 $y_i''' = e^{x}$
 $y_i''' = e^{x}$
 $y_i''' = e^{x}$

February 9, 2016 6 / 41

$$y_{2} = e^{x}$$

$$y_{2}'' = y_{2} = y_{2}$$

$$y_{2}' = e^{x}$$

$$y_{2}'' = e^{x}$$

February 9, 2016 7 / 41

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで

$$= e^{(-e^{x})} - e^{(-e^{x})} = -1 - 1 = -2$$

$$W(y_1, y_2)(x) = -2 \neq 0$$

Hence they are linearly independent.
Property (iii) holds, we have a fundamental
solution set.
The general solution is $y(x) = c_1 e^{x} + c_2 e^{x}$.

February 9, 2016 8 / 41

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで

Consider $x^2y'' - 4xy' + 6y = 0$ for x > 0

Determine which if any of the following sets of functions is a fundamental solution set.

(a)
$$y_1 = 2x^2$$
, $y_2 = x^2$ (linearly dependent $1y_1 + (-2)y_2 = 0$
(b) $y_1 = x^2$, $y_2 = x^{-2}$ (y_2 doesn't solve it (see below)
(c) $y_1 = x^3$, $y_2 = x^2$
(d) $y_1 = x^2$, $y_2 = x^3$, $y_3 = x^{-2}$ (too mony functions 2^{nd} order

February 9, 2016 9 / 41

Does
$$y_{1} = x^{2}$$
 solve the ODE?
 $y_{1} = x^{2}$ $x^{2}y_{1}'' - 4xy_{1}' + 6y_{1} = y_{1} = x^{2}$ is
 $y_{1}' = 2x$ $x^{2}(2) - 4x(2x) + 6x^{2} = 0$
 $y_{1}'' = 2$ $2x^{2} - 8x^{2} + 6x^{2} = 0$
Does $y_{2} = x^{2}$ solve the ODE?
 $y_{2} = x^{2}$ $x^{2}y_{2}'' - 4x(y_{2}' + 6y_{2}) = y_{2} = x^{2}$ is
 $y_{2}' = -2x^{-3}$ $x^{2}(6x^{-4}) - 4x(-2x^{-3}) + 6x^{2} = solution$
 $y_{2}'' = 6x^{-4}$ $6x^{2} + 8x^{2} + 6x^{2} = 20x^{2} \neq 0$

February 9, 2016 10 / 41

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Does
$$y_1 = x^3$$
 solve the ODE?
 $y_1 = x^3$ $x^2y_1'' - 4xy_1' + 6y_1 = y_1 = x^3$
 $y_1' = 3x^2$ $x^2(6x) - 4x(3x^2) + 6x^3 = 4he$
 $y_1'' = 6x$ $6x^3 - 12x^3 + 6x^3 = 0$
Are $y_1 = x^3$, $y_2 = x^2$ linearly independent?

 $W(y_1, y_2)(x) = \begin{vmatrix} y_1, & y_2 \\ y_1', & y_2' \end{vmatrix} = \begin{vmatrix} x^3 & x^2 \\ 3x^2 & 2x \end{vmatrix}$

February 9, 2016 11 / 41

3

<ロ> <問> <問> < 回> < 回> 、

$$= \chi^{3}(2\chi) - 3\chi^{2}(\chi^{2}) = 2\chi^{4} - 3\chi^{4} = -\chi^{4}$$

$$W(y_{1},y_{2})(\chi) = -\chi^{4} \neq 0 \quad (for all \times > 0)$$

Nerve y_{1},y_{2} are lineally independent,
Option (c) is a fundamental solution
set.
The general solution is $y = c_{1}\chi^{3} + c_{2}\chi^{2}$.

ŀ