February 4 Math 2335 sec 51 Spring 2016

Section 3.3: Secant Method

Newton's method begins with a straight line approximation to the function $f(x)$-namely, the tangent line.

Question: Can we use a different straight line?
The short answer is "yes" we can. The tangent line touches a curve (locally) at only one point. We recall...

Definition: If the graph of f contains the distinct points ($x_{0}, f\left(x_{0}\right)$) and $\left(x_{1}, f\left(x_{1}\right)\right)$, then the line

$$
y=f\left(x_{1}\right)+\left(x-x_{1}\right) \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

is a secant line to the graph of f through these points.

Secant Method

We begin with two initial estimates x_{0} and x_{1} of the true root α.

Figure: Choose x_{2} as the x-intercept of the secant line approximation.

Secant Method

Figure: The starting values x_{0} and x_{1} can each be on either side of the exact root.

Secant Method
Find the formula for x_{2} from the secant line.

$$
y=f\left(x_{1}\right)+\left(x-x_{1}\right) \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

when $x=x_{3} y=0$

$$
\begin{gathered}
0=f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
\left(x_{2}-x_{1}\right) \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=-f\left(x_{1}\right)
\end{gathered}
$$

$$
\begin{aligned}
& x_{2}-x_{1}=-f\left(x_{1}\right) \cdot \frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)} \quad \begin{array}{l}
\text { assuming } \\
f\left(x_{1}\right) \neq f\left(x_{0}\right)
\end{array} \\
& x_{2}=x_{1}-f\left(x_{1}\right) \cdot \frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)}
\end{aligned}
$$

Secant Method Compared to Newton's Method

Newton's Method: $\quad x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$

Remember that by the definition of the derivative

$$
f^{\prime}\left(x_{1}\right)=\lim _{x_{0} \rightarrow x_{1}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} .
$$

So

$$
f^{\prime}\left(x_{1}\right) \approx \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \quad \text { if } \quad\left|x_{1}-x_{0}\right| \approx 0
$$

Secant Method: $\quad x_{2}=x_{1}-f\left(x_{1}\right) \cdot \frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)}$

Secant Method Iteration Formula

We build a sequence with the general formula...

Secant Method Iteration Formula

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \cdot \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, \quad n=1,2,3, \ldots
$$

The sequence begins with two starting guesses x_{0} and x_{1} expected to be near the desired root.

Exit Strategy: Set an allowable tolerance ϵ, and then stop the iterations if

- $\left|x_{n+1}-x_{n}\right|<\epsilon$, or
- $n \geq N$ where N is the maximum allowed iterations.

If the latter condition is used, it likely indicates that the method has failed.

Example
(a) We wish to compute $\sqrt[3]{4}$. Identify a convenient function $f(x)$ whose zero $\alpha=\sqrt[3]{4}$, and find the iteration formula for the secant method.
$f(x)=x^{3}-4$ has $\alpha=\sqrt[3]{4}$ as its true root.

$$
\begin{aligned}
& x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} \\
& f\left(x_{n}\right)=x_{n}^{3}-4 \text { and } f\left(x_{n-1}\right)=x_{n-1}^{3}-4 \\
& \quad f\left(x_{n}\right)-f\left(x_{n-1}\right)=x_{n}^{3}-4-\left(x_{n-1}^{3}-4\right)=x_{n}^{3}-x_{n-1}^{3}
\end{aligned}
$$

S.

$$
x_{n+1}=x_{n}-\left(x_{n}^{3}-4\right) \frac{x_{n}-x_{n-1}}{x_{n}^{3}-x_{n-1}^{3}}
$$

Example Continued...
(b) Set $x_{0}=1$ and $x_{1}=2$ and use the iteration scheme to compute x_{2}.

$$
\begin{aligned}
x_{2} & =x_{1}-\left(x_{1}^{3}-4\right) \frac{x_{1}-x_{0}}{x_{1}^{3}-x_{0}^{3}} \\
& =2-\left(2^{3}-4\right) \cdot \frac{2-1}{2^{3}-1^{3}}=2-4 \cdot \frac{1}{7}=\frac{10}{7}
\end{aligned}
$$

Example Continued...
(c) Use $x_{1}=2$ and x_{2} found at the last step to compute x_{3}.

$$
\begin{aligned}
x_{3} & =x_{2}-\left(x_{2}^{3}-4\right) \frac{x_{2}-x_{1}}{x_{2}^{3}-x_{1}^{3}} \\
& =\frac{10}{7}-\left(\left(\frac{10}{7}\right)^{3}-4\right) \cdot \frac{10 / 7-2}{\left(\frac{10}{7}\right)^{3}-2^{3}}=\frac{169}{109} \\
& =1.550459
\end{aligned}
$$

Example Continued...

The root was found to within an error tolerance of $\epsilon=10^{-8}$ in 7 steps using Matlab ${ }^{\circledR}$.

n	x_{n}	$f\left(x_{n}\right)$
0	1.000000000000000	-3.000000000000000
1	2.000000000000000	4.000000000000000
2	1.428571428571429	-1.084548104956268
3	1.550458715596330	-0.272817828789934
4	1.591424324468624	0.030491183856831
5	1.587306115447955	-0.000717632200947
6	1.587400811747808	-0.000001815952090
7	1.587401051982567	0.000000000108610
8	1.587401051968199	-0.000000000000001

Error Analysis: Secant Method

Assume that $f^{\prime}(\alpha) \neq 0$. It can be shown that the errors at the $(n+1)^{s t}$ and $n^{\text {th }}$ steps are related by

$$
\left|\alpha-x_{n+1}\right| \approx c\left|\alpha-x_{n}\right|^{r}
$$

where $\quad r=\frac{1+\sqrt{5}}{2}, \quad$ and $\quad c=\left|\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\right|^{r-1}$.

Comparison: Newton's \& Secant Methods

- Newton's is a one step method because x_{n+1} depends only on x_{n}. Secant is a two step method because x_{n+1} depends on x_{n} and x_{n-1}.
- For Newton's method, we must have a formula for $f^{\prime}(x)$. For the secant method, this is not needed.
- For both methods, initial guesses may have to satisfy

$$
\left|\alpha-x_{i}\right|<\frac{2\left|f^{\prime}(\alpha)\right|}{\left|f^{\prime \prime}(\alpha)\right|}, \quad \text { where } \quad i=0, \text { or } i=0,1
$$

- For Newton's, $\left|\operatorname{Err}\left(x_{n+1}\right)\right| \sim\left|\operatorname{Err}\left(x_{n}\right)\right|^{2}$. whereas for the Secant method $\left|\operatorname{Err}\left(x_{n+1}\right)\right| \sim\left|\operatorname{Err}\left(x_{n}\right)\right|^{1.62}$. So Newton's method may require fewer iterations.

Section 3.5: Ill-Behavior in Root Finding

We assumed that $f^{\prime}(\alpha) \neq 0$ in our error analysis of Newton's and Secant methods. The result was that
for Newton's: $\left|\operatorname{Err}\left(x_{n+1}\right)\right| \sim\left|\operatorname{Err}\left(x_{n}\right)\right|^{2}, \quad$ and

$$
\text { for Secant: } \quad\left|\operatorname{Err}\left(x_{n+1}\right)\right| \sim\left|\operatorname{Err}\left(x_{n}\right)\right|^{1.62} .
$$

If we started with an initial error of 0.1 , we'd expect to see error along the lines of

n	Newton's	Secant
0	0.1000000000000000	0.100000000000000
1	0.0100000000000000	0.024097168320749
2	0.0001000000000000	0.002409716832075
3	0.0000000100000000	0.000058067352108
4	0.0000000000000001	0.000000139925876

III Behaved Root Finding Example

The function $f(x)=x^{3}-1.4 x^{2}-21.75 x+51.2$ has one real root. (It's exact value is $\alpha=3.2$.) Newton's method was used with an initial guess of 3.1 and a tolerance of $\epsilon=10^{-3}$ to produce the following table:

n	x_{n}	$\left\|x_{n+1}-x_{n}\right\|$	$\left\|\alpha-x_{n}\right\|$
0	3.100000000000000	0.050310559006211	0.1000
1	3.150310559006211	0.024920686619802	0.0497
2	3.175231245626013	0.012403166317891	0.0248
3	3.187634411943904	0.006187466419181	0.0124
4	3.193821878363085	0.003090225829813	0.0062
5	3.196912104192898	0.001544238772135	0.0015
6	3.198456342965033	0.000771901186694	0.0008
7	3.199228244151727		

III Behaved Root Finding Example

The results aren't very good! Let's notice that

$$
f(x)=x^{3}-1.4 x^{2}-21.75 x+51.2=(x-3.2)^{2}(x+5)
$$

Find $f^{\prime}(3.2)$.

$$
\begin{aligned}
f^{\prime}(x)= & 2(x-3.2)(x+5)+(x-3.2)^{2} \\
f^{\prime}(3.2) & =2(3.2-3.2)(3.2+5)+(3.2-3.2)^{2} \\
& =0
\end{aligned}
$$

Here $f^{\prime}(\alpha)=0$

III Behaved Root Finding

Definition: (Multiple Roots) The number α is a root (or zero) of multiplicity m of the function $f(x)$ if

$$
f(x)=(x-\alpha)^{m} h(x), \quad \text { where } \quad h(\alpha) \neq 0 .
$$

If $m=1$, we call α a simple root.
If f is sufficiently differentiable, and α is a root of multiplicity m of f, then

$$
f(\alpha)=f^{\prime}(\alpha)=\cdots f^{(m-1)}(\alpha)=0 \quad \text { and } \quad f^{(m)}(\alpha) \neq 0
$$

Examples of Multiple Roots
(a) $f(x)=(x-3.2)^{2}(x+5) \quad f$ has 2 roots
$\alpha_{1}=3.2$ of multiplicity 2
$\alpha_{2}=-5$ is a simple root
(b) $g(x)=(x+1)(x-1)^{3}(x-2)$
g has 3 roots
$\alpha_{1}=-1$ and $\alpha_{3}=2$ are simple
$\alpha_{2}=1$ has multiplicity 3

Examples of Multiple Roots
(c) $\alpha=0$ is a root of multiplicity m of $h(x)=\cos x-1+\frac{x^{2}}{2}$. Find m.

$$
\begin{array}{ll}
h(0)=\cos 0-1+\frac{0^{2}}{2}=1-1=0 \\
h^{\prime}(x)=-\sin x+x, & h^{\prime}(0)=-\sin 0+0=0 \\
h^{\prime \prime}(x)=-\cos x+1, & h^{\prime \prime}(0)=-\cos 0+1=-1+1=0 \\
h^{\prime \prime \prime}(x)=\sin x & , h^{\prime \prime \prime}(0)=0 \\
h^{(4)}(x)=\cos x & , h^{(4)}(0)=\cos 0=1 \neq 0
\end{array}
$$

(i)
$h^{(i)}(0)=0$ for $i=0,1,2,3$
and $\quad h^{(4)}(0) \neq 0$

Hence 0 is a root of multiplicity 4.

Newton's Method with Multiple Roots

Figure: Noise in function evaluation and a horizontal tangent increases error in root finding for multiple roots.

Newton's Method with Multiple Roots

For a simple root (not a multiple root):

$$
\frac{\left|\alpha-x_{n+1}\right|}{\left|\alpha-x_{n}\right|} \sim\left|\alpha-x_{n}\right|
$$

If α is a root of multiplicity $m \geq 2$ of $f(x)$, then

$$
\frac{\left|\alpha-x_{n+1}\right|}{\left|\alpha-x_{n}\right|} \sim \lambda, \quad \text { where } \quad \lambda=\frac{m-1}{m}
$$

Example

Recall the errors when Newton's method was used with $f(x)=(x-3.2)^{2}(x+5)$.

n $\left\|\alpha-x_{n}\right\|$ $\frac{\left\|\alpha-x_{n+1}\right\|}{\left\|\alpha-x_{n}\right\|}$$\quad$ Note $m=2$		
0	0.1000	0.4969
1	0.0497	0.4985
2	0.0248	0.4992
3	0.0124	0.4996
4	0.0062	0.4998
5	0.0031	0.4999
6	0.0015	0.5000
7	0.0008	

Example

Newton's method was used to try to find a root α of a function $f(x)$. The first several iterates were recorded in the following table. Use these results to make a conjecture as to the multiplicity m of the root α

n	x_{n}	$\left\|x_{n+1}-x_{n}\right\|$
0	0.75	0.00271
1	0.752710	0.00208
2	0.754795	0.00157
3	0.756368	0.00118
4	0.757552	0.000889
5	0.758441	

We can approxininade

$$
\frac{\left|\alpha-x_{n+1}\right|}{\left|\alpha-x_{n}\right|} \text { with } \frac{\left|x_{n+1}-x_{n}\right|}{\left|x_{n}-x_{n-1}\right|}
$$

$$
\frac{\left|x_{2}-x_{1}\right|}{\left|x_{1}-x_{0}\right|}=0.768
$$

$$
\begin{aligned}
& \frac{\left|x_{3}-x_{2}\right|}{\left|x_{2}-x_{1}\right|} \stackrel{1}{=} 0.755 \quad \frac{\left|x_{4}-x_{3}\right|}{\left|x_{3}-x_{2}\right|}=0.752 \\
& \frac{\left|x_{5}-x_{4}\right|}{\left|x_{4}-x_{3}\right|}=0.753
\end{aligned}
$$

The ratio is about 0.75

$$
\frac{m-1}{m} \approx 0.75=\frac{3}{4}
$$

we expect that α is a root of multiplicity 4 .

