February 4 Math 2335 sec 51 Spring 2016

Section 3.3: Secant Method

Newton's method begins with a straight line approximation to the function f(x)—namely, the tangent line.

Question: Can we use a different straight line?

The short answer is "yes" we can. The tangent line touches a curve (locally) at only one point. We recall...

Definition: If the graph of *f* contains the distinct points $(x_0, f(x_0))$ and $(x_1, f(x_1))$ then the line

$$y = f(x_1) + (x - x_1) \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

is a secant line to the graph of f through these points.

Secant Method

We begin with two initial estimates x_0 and x_1 of the true root α .

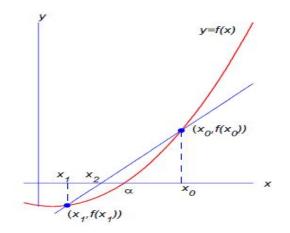


Figure: Choose x_2 as the x-intercept of the secant line approximation.

February 9, 2016

2/29

Secant Method

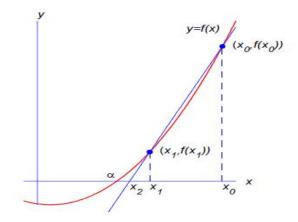


Figure: The starting values x_0 and x_1 can each be on either side of the exact root.

Secant Method

Find the formula for x_2 from the secant line.

$$y = f(x_1) + (x - x_1) \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

When
$$x = x_{2}$$
 $y = 0$

$$0 = f(x_{1}) + (x_{2} - x_{1}) \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$(x_{2} - x_{1}) \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} = -f(x_{1})$$

February 9, 2016 4 / 29

2

イロト イヨト イヨト イヨト

$$x_2 - x_1 = -f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$
 assuming $f(x_1) \neq f(x_0)$

$$X_2 = X_1 - f(x_1) \cdot \frac{X_1 - X_0}{f(x_1) - f(x_0)}$$

February 9, 2016 5 / 29

(ロ) (四) (主) (主) (主)

Secant Method Compared to Newton's Method

Newton's Method:
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Remember that by the definition of the derivative

$$f'(x_1) = \lim_{x_0 \to x_1} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

So

$$f'(x_1) \approx \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 if $|x_1 - x_0| \approx 0$.

Secant Method: $x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$

Secant Method Iteration Formula

We build a sequence with the general formula...

Secant Method Iteration Formula

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}, \quad n = 1, 2, 3, \dots$$

The sequence begins with two starting *guesses* x_0 and x_1 expected to be near the desired root.

Exit Strategy: Set an allowable tolerance ϵ , and then stop the iterations if

► $|x_{n+1} - x_n| < \epsilon$, or

• $n \ge N$ where N is the maximum allowed iterations.

If the latter condition is used, it likely indicates that the method has failed.

Example

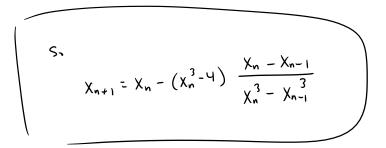
(a) We wish to compute $\sqrt[3]{4}$. Identify a convenient function f(x) whose zero $\alpha = \sqrt[3]{4}$, and find the iteration formula for the secant method.

$$f(x) = x^{3} - 4 \quad \text{has} \quad \alpha = \overline{3} \overline{4} \quad \text{as its free root}.$$

$$x_{n+1} = x_{n} - f(x_{n}) \frac{x_{n} - x_{n-1}}{f(x_{n}) - f(x_{n-1})}$$

$$f(x_{n}) = x_{n}^{3} - 4 \quad \text{ond} \quad f(x_{n-1}) = x_{n-1}^{3} - 4$$

$$f(x_{n}) - f(x_{n-1}) = x_{n}^{3} - 4 - (x_{n-1}^{3} - 4) = x_{n}^{3} - x_{n-1}^{3}$$



<ロト <回 > < 回 > < 回 > < 回 > … 回

Example Continued...

(b) Set $x_0 = 1$ and $x_1 = 2$ and use the iteration scheme to compute x_2 .

$$X_2 = X_1 - (x_1^3 - 4) \frac{X_1 - X_0}{X_1^3 - X_0^3}$$

$$= 2 - (2^{3}-4) \cdot \frac{2-1}{2^{3}-1^{3}} = 2 - 4 \cdot \frac{1}{7} = \frac{10}{7}$$

Example Continued...

(c) Use $x_1 = 2$ and x_2 found at the last step to compute x_3 .

$$X_{3} = X_{1} - (X_{1}^{3} - 4) \frac{X_{1} - X_{1}}{X_{2}^{3} - X_{1}^{3}}$$

= $\frac{10}{7} - ((\frac{10}{7})^{3} - 4) \cdot \frac{10/7 - 2}{(\frac{10}{7})^{3} - 2^{3}} = \frac{169}{109}$
= 1.550459

February 9, 2016 12 / 29

・ロン ・四 と ・ 回 と ・ 回

Example Continued...

The root was found to within an error tolerance of $\epsilon = 10^{-8}$ in 7 steps using Matlab [®].

n	Xn	$f(x_n)$
0	1.000000000000000	-3.000000000000000
1	2.000000000000000	4.0000000000000000
2	1.428571428571429	-1.084548104956268
3	1.550458715596330	-0.272817828789934
4	1.591424324468624	0.030491183856831
5	1.587306115447955	-0.000717632200947
6	1.587400811747808	-0.000001815952090
7	1.587401051982567	0.00000000108610
8	1.587401051968199	-0.000000000000001

イロト 不得 トイヨト イヨト 二日

Error Analysis: Secant Method

Assume that $f'(\alpha) \neq 0$. It can be shown that the errors at the $(n+1)^{st}$ and n^{th} steps are related by

$$|\alpha - x_{n+1}| \approx c |\alpha - x_n|^r$$

where $r = \frac{1 + \sqrt{5}}{2}$, and $c = \left|\frac{f''(\alpha)}{2f'(\alpha)}\right|^{r-1}$.

Comparison: Newton's & Secant Methods

- Newton's is a **one step** method because x_{n+1} depends only on x_n . Secant is a **two step** method because x_{n+1} depends on x_n and x_{n-1} .
- ► For Newton's method, we must have a formula for f'(x). For the secant method, this is not needed.
- For both methods, initial guesses may have to satisfy

$$|\alpha - x_i| < \frac{2|f'(\alpha)|}{|f''(\alpha)|},$$
 where $i = 0$, or $i = 0, 1$

► For Newton's, $|\text{Err}(x_{n+1})| \sim |\text{Err}(x_n)|^2$. whereas for the Secant method $|\text{Err}(x_{n+1})| \sim |\text{Err}(x_n)|^{1.62}$. So Newton's method may require fewer iterations.

化四苯化氢苯化医苯化医苯乙基

Section 3.5: III-Behavior in Root Finding

We assumed that $f'(\alpha) \neq 0$ in our error analysis of Newton's and Secant methods. The result was that

for Newton's: $|\operatorname{Err}(x_{n+1})| \sim |\operatorname{Err}(x_n)|^2$, and

for Secant: $|\text{Err}(x_{n+1})| \sim |\text{Err}(x_n)|^{1.62}$.

If we started with an initial error of 0.1, we'd expect to see error along the lines of

n	Newton's	Secant
0	0.1000000000000000	0.10000000000000
1	0.0100000000000000	0.024097168320749
2	0.000100000000000	0.002409716832075
3	0.00000010000000	0.000058067352108
4	0.0000000000000001	0.000000139925876

III Behaved Root Finding Example

The function $f(x) = x^3 - 1.4x^2 - 21.75x + 51.2$ has one real root. (It's exact value is $\alpha = 3.2$.) Newton's method was used with an initial guess of 3.1 and a tolerance of $\epsilon = 10^{-3}$ to produce the following table:

n	X _n	$ x_{n+1} - x_n $	$ \alpha - \mathbf{X}_{\mathbf{n}} $
0	3.100000000000000	0.050310559006211	0.1000
1	3.150310559006211	0.024920686619802	0.0497
2	3.175231245626013	0.012403166317891	0.0248
3	3.187634411943904	0.006187466419181	0.0124
4	3.193821878363085	0.003090225829813	0.0062
5	3.196912104192898	0.001544238772135	0.0015
6	3.198456342965033	0.000771901186694	0.0008
7	3.199228244151727		

Ill Behaved Root Finding Example

The results aren't very good! Let's notice that

$$f(x) = x^3 - 1.4x^2 - 21.75x + 51.2 = (x - 3.2)^2(x + 5).$$

Find $f'(3.2)$.

$$f'(x) = 2(x - 3.2)(x + 5) + (x - 3.2)^{2}$$

$$f'(3.2) = 2(3.2 - 3.2)(3.2 + 5) + (3.2 - 3.2)^{2}$$

$$= 0$$
Here $f'(x) = 0$

イロト イポト イヨト イヨト

э

19/29

February 9, 2016

III Behaved Root Finding

Definition: (Multiple Roots) The number α is a root (or zero) of multiplicity *m* of the function *f*(*x*) if

$$f(x) = (x - \alpha)^m h(x)$$
, where $h(\alpha) \neq 0$.

If m = 1, we call α a simple root.

If *f* is sufficiently differentiable, and α is a root of multiplicity *m* of *f*, then

$$f(\alpha) = f'(\alpha) = \cdots f^{(m-1)}(\alpha) = 0$$
 and $f^{(m)}(\alpha) \neq 0$.

February 9, 2016

20/29

Examples of Multiple Roots

(a)
$$f(x) = (x - 3.2)^2(x + 5)$$
 f has 2 routs
 $a_1 = 3.2$ of multiplicity 2
 $a_2 = -5$ is a simple root

(b)
$$g(x) = (x+1)(x-1)^3(x-2)$$

g has 3 roots
 $a_1 = -1$ and $a_3 = 2$ are simple
 $a_2 = 1$ has multiplicity 3

February 9, 2016 21 / 29

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Examples of Multiple Roots

(c) $\alpha = 0$ is a root of multiplicity *m* of $h(x) = \cos x - 1 + \frac{x^2}{2}$. Find *m*.

$$h(o) = C_{05} 0 - 1 + \frac{o^{2}}{2} = 1 - 1 = 0$$

$$h''(x) = -Sin x + x \qquad h'(o) = -Sin 0 + 0 = 0$$

$$h''(x) = -C_{05} x + 1 \qquad h''(o) = -C_{05} 0 + 1 = -1 + 1 = 0$$

$$h'''(x) = Sin x \qquad h'''(o) = 0$$

$$h^{(4)}(x) = C_{05} x \qquad h^{(4)}(o) = C_{05} 0 = 1 \neq 0$$

February 9, 2016 22 / 29

$$h^{(i)}_{(0)=0}$$
 for $i=0,1,2,3$
and $h^{(4)}_{(0)}\neq 0$

February 9, 2016 23 / 29

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで

Newton's Method with Multiple Roots

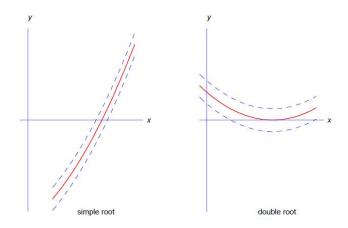


Figure: Noise in function evaluation and a horizontal tangent increases error in root finding for multiple roots.

February 9, 2016

24/29

Newton's Method with Multiple Roots

For a simple root (not a multiple root):

$$\frac{|\alpha - \mathbf{x}_{n+1}|}{|\alpha - \mathbf{x}_n|} \sim |\alpha - \mathbf{x}_n|$$

If α is a root of multiplicity $m \ge 2$ of f(x), then

$$rac{|lpha - x_{n+1}|}{|lpha - x_n|} \sim \lambda, \quad ext{where} \quad \lambda = rac{m-1}{m}$$

イロト 不得 トイヨト イヨト 二日

February 9, 2016

25/29

Example

Recall the errors when Newton's method was used with $f(x) = (x - 3.2)^2(x + 5)$.

n	$ \alpha - \mathbf{x}_n $	$\frac{ \alpha - x_{n+1} }{ \alpha - x_n }$	Note m=2
0	0.1000	0.4969	
1	0.0497	0.4985	-)
2	0.0248	0.4992	$1 - \frac{m-1}{2} = \frac{2-1}{2}$
3	0.0124	0.4996	1-m 2
4	0.0062	0.4998	,
5	0.0031	0.4999	= 1 2
6	0.0015	0.5000	C
7	0.0008		

э

イロト イポト イヨト イヨト

Example

Newton's method was used to try to find a root α of a function f(x). The first several iterates were recorded in the following table. Use these results to make a conjecture as to the multiplicity *m* of the root α

n	Xn	$ x_{n+1} - x_n $
0	0.75	0.00271
1	0.752710	0.00208
2	0.754795	0.00157
3	0.756368	0.00118
4	0.757552	0.000889
5	0.758441	

We can approximinate
$$\frac{|\alpha - X_{n+1}|}{|\alpha - X_n|} \quad \text{with} \quad \frac{|X_{n+1} - X_n|}{|X_n - X_{n-1}|}$$

イロト 不得 トイヨト イヨト 二日

February 9, 2016 27 / 29

$$\frac{|X_2 - X_1|}{|X_1 - X_0|} \stackrel{!}{=} 0.768$$

$$\frac{|x_3 - x_2|}{|x_2 - x_1|} \stackrel{!}{=} 0.755 \qquad \frac{|x_4 - x_3|}{|x_3 - x_2|} \stackrel{!}{=} 0.752$$

$$\frac{|X_{5} - X_{4}|}{|X_{4} - X_{5}|} \stackrel{\prime}{=} 0.753$$

$$\frac{m-1}{m} \approx 0.75 = \frac{3}{4}$$

February 9, 2016 28 / 29

we expect that q is a root of multiplicity 4.

February 9, 2016 29 / 29

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●