February 12 MATH 1112 sec. 54 Spring 2020

Trigonometric Functions of Acute Angles

In this section, we are going to define six new functions called trigonometric functions. We begin with an acute angle θ in a right triangle with the sides whose lengths, are labeled:

Sine, Cosine, and Tangent

For the acute angle θ, we define the three numbers as follows

$$
\begin{aligned}
\sin \theta=\frac{\text { opp }}{\text { hyp }}, & \text { read as "sine theta" } \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}, & \text { read as "cosine theta" } \\
\tan \theta=\frac{\text { opp }}{\text { adj }}, & \text { read as "tangent theta" }
\end{aligned}
$$

Note that these are numbers, ratios of side lengths, and have no units.
It may be convenient to enclose the argument of a trig function in parentheses. That is,

$$
\sin \theta=\sin (\theta)
$$

Cosecant, Secant, and Cotangent

The remaining three trigonometric functions are the reciprocals of the first three

$$
\begin{aligned}
& \csc \theta=\frac{\text { hyp }}{\mathrm{opp}}=\frac{1}{\sin \theta}, \text { read as "cosecant theta" } \\
& \sec \theta=\frac{\text { hyp }}{\operatorname{adj}}=\frac{1}{\cos \theta}, \quad \text { read as "secant theta" } \\
& \cot \theta=\frac{\operatorname{adj}}{\mathrm{opp}}=\frac{1}{\tan \theta}, \quad \text { read as "cotangent theta" }
\end{aligned}
$$

A Word on Notation

The trigonometric ratios define functions:
input angle number \rightarrow output ratio number.
From the definitions, we see that

$$
\csc \theta=\frac{1}{\sin \theta}
$$

Functions have arguments. It is NOT acceptable to write the above relationship as

$$
\csc =\frac{1}{\sin } .
$$

Example
Determine the six trigonometric values of the acute angle θ.

call opp, a. thin

$$
\begin{aligned}
& \sin \theta=\frac{\text { app }}{\text { hyp }}=\frac{\sqrt{40}}{7} \\
& \cos \theta=\frac{\text { adj }}{h_{y p}^{\prime}}=\frac{3}{7} \\
& \tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{\sqrt{40}}{3}
\end{aligned}
$$

$$
\begin{gathered}
a^{2}+3^{2}=7^{2} \Rightarrow a^{2}=7^{2}-3^{2}=40 \\
a=\sqrt{40} \\
\text { February } 12,2020 \quad 5 / 23
\end{gathered}
$$

$$
\begin{aligned}
\csc \theta & =\frac{7}{\sqrt{40}} \\
\sec \theta & =\frac{7}{3} \\
\cot \theta & =\frac{3}{\sqrt{40}}
\end{aligned}
$$

Example
Determine the six trigonometric values of the acute angle θ.
 $\sin \theta=\frac{4}{5}$

$$
\sin \theta=\frac{o p p}{h y \rho}
$$

Coll the hypotenuse C and the adjacent log. b.

$$
\begin{aligned}
\sin \theta=\frac{8}{c} & =\frac{4}{5} \\
8 \cdot 3 & =4 \cdot c \Rightarrow c=\frac{8 \cdot 5}{4}=10
\end{aligned}
$$

$$
8^{2}+b^{2}=10^{2} \Rightarrow b^{2}=10^{2}-8^{2}=100-64=36 \quad b=6
$$

$$
\begin{aligned}
& \cos \theta=\frac{a d j}{\operatorname{hnf}}=\frac{6}{10}=\frac{3}{5} \\
& \tan \theta=\frac{a p p}{a d j}=\frac{8}{6}=\frac{4}{3} \\
& \csc \theta=\frac{5}{4} \\
& \sec \theta=\frac{5}{3} \\
& \cot \theta=\frac{3}{4}
\end{aligned}
$$

Question

Suppose we know that $\cos \theta=\frac{3}{5}$. Then the length X of the hypotenuse

(a) $X=5$

$$
\frac{9}{x}=\frac{3}{5}
$$

(b) $X=\sqrt{15}$
(c) $X=12$
(d) $X=15$
(e) can't be determined without more information

9

Question

For the angle θ shown, which statement is correct?

Example
Suppose the acute angle α satisfies $\tan \alpha=2$. Determine the remaining five trigonometric values of α.
we con create a representative triangle.

$$
\tan \alpha=2=\frac{2}{1}
$$

Let's take opp $=2$ and adj $=1$
Calling the hypotendise C

$$
\begin{aligned}
c^{2} & =2^{2}+1^{2} \Rightarrow c^{2}=5 \Rightarrow c=\sqrt{5} \\
\sin \alpha & =\frac{2}{\sqrt{5}}, \cos \alpha=\frac{1}{\sqrt{5}}
\end{aligned}
$$

$$
\csc \alpha=\frac{\sqrt{5}}{2}, \quad \sec \alpha=\sqrt{5} \quad \cot \alpha=\frac{1}{2}
$$

