Feb. 12 Math 2254H sec 015H Spring 2015
Section 7.8: Improper Integrals
Show that the integral is divergent

$$
\int_{-2}^{1} \frac{1}{x^{2}} d x=\int_{-2}^{0} \frac{1}{x^{2}} d x+\int_{0}^{1} \frac{1}{x^{2}} d x
$$

Consider the right one:

$$
\begin{aligned}
& \text { Conside the right one: } \\
& \begin{aligned}
\int_{0}^{1} \frac{1}{x^{2}} d x & =\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{1}{x^{2}} d x=\left.\lim _{t \rightarrow 0^{+}} \frac{-1}{x}\right|_{t} ^{1} \\
& =\lim _{t \rightarrow 0^{+}}\left(\frac{-1}{1}-\frac{-1}{t}\right)=\infty
\end{aligned}
\end{aligned}
$$

Since $\int_{0}^{1} \frac{1}{x^{2}} d x$ diverges, the integral $\int_{-2}^{1} \frac{1}{x^{2}} d x$ is divergent.

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x=2
$$

Independence of Limts

Show that $\int_{-2}^{1} \frac{d x}{x^{2}} \neq \lim _{t \rightarrow 0}\left(\int_{-2}^{t} \frac{d x}{x^{2}}+\int_{t}^{1} \frac{d x}{x^{2}}\right)$.

$$
\begin{aligned}
& \lim _{t \rightarrow 0}\left(\int_{-2}^{t} \frac{1}{x^{2}} d x+\int_{t}^{1} \frac{1}{x^{2}} d x\right) \\
& =\lim _{t \rightarrow 0}\left[\left.\frac{-1}{x}\right|_{-2} ^{t}+\left.\frac{-1}{x}\right|_{t} ^{1}\right] \\
& =\lim _{t \rightarrow 0}\left[\frac{-1}{t}-\left(\frac{-1}{-2}\right)+\left(\frac{-1}{1}-\frac{-1}{t}\right)\right]=\lim _{t \rightarrow 0}\left(\frac{-1}{2}-1\right)=\frac{-3}{2}
\end{aligned}
$$

Comparisons
Evaluate the improper integral $\int_{1}^{\infty} e^{-x} d x$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x} d x=\lim _{t \rightarrow \infty}-\left.e^{-x}\right|_{1} ^{t} \\
& \quad=\lim _{t \rightarrow \infty}\left(-e^{-t}-\left(-e^{-1}\right)\right)=\frac{1}{e}
\end{aligned}
$$

Convergent

Is it possible to evaluate $\int_{1}^{\infty} e^{-x^{2}} d x$?

Then is no elementary artiderivatue for $e^{-x^{2}}$.

Comparisons

$$
\mathrm{y}=e^{-x}
$$

Figure: If the area under the blue curve is finite, can the area under the red curve be infinite?

Comparison Theorem

Suppose f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$. Then
(a) if $\int_{a}^{\infty} f(x) d x$ converges, then $\int_{a}^{\infty} g(x) d x$ converges.
(b) if $\int_{a}^{\infty} g(x) d x$ diverges, then $\int_{a}^{\infty} f(x) d x$ diverges.

Example
Determine if the integral

$$
\int_{1}^{\infty} e^{-x^{2}} d x
$$

is convergent or divergent.
This is convergent by comparison to $\quad \int_{1}^{\infty} e^{-x} d x$ since

$$
0 \leqslant e^{-x^{2}} \leqslant e^{-x} \text { for all } x \geqslant 1 \text {. }
$$

Figure: The curves $y=\frac{1}{x}$ and $y=\frac{1}{\ln x}$ plotted together for $x \geqslant 3$.

Example
Determine if the integral

$$
\int_{3}^{\infty} \frac{d x}{\ln x}
$$

is convergent or divergent.
$\int_{3}^{\infty} \frac{1}{x} d x$ is divergent
Since $0 \leqslant \frac{1}{x} \leqslant \frac{1}{\ln x}$ for $x \geqslant 3$
$\int_{3}^{\infty} \frac{1}{\ln x} d x$ diverges by the companiso theorem.

Determine if the Integral Converges or Diverges
(a) $\int_{\pi}^{\infty} \frac{2+\sin x}{x^{3}} d x$

$$
\begin{aligned}
& 2+(-1) \leq 2+\sin x \leq 2+1 \\
& \frac{1}{x^{3}} \leq \frac{2+\sin x}{x^{3}} \leq \frac{3}{x^{3}}
\end{aligned}
$$

Since $0 \leq \frac{2+\sin x}{x^{3}} \leq \frac{3}{x^{3}}$ and

$$
\int_{\pi}^{\infty} \frac{3}{x^{3}} d x \text { converges, } \int_{\pi}^{\infty} \frac{2+\sin x}{x^{3}} d x
$$

converges by the comparison theorem.

Determine if the Integral Converges or Diverges
(b) $\int_{1}^{\infty} \frac{\arctan x}{\sqrt{x}} d x$

$$
\begin{aligned}
& \frac{\pi}{4} \leq \tan ^{-1} x \leq \frac{\pi}{2} \\
& \frac{\pi}{4} \leq \frac{\tan ^{-1} x}{\sqrt{x}} \leq \frac{\pi / 2}{\sqrt{x}}
\end{aligned}
$$

Since $\int_{1}^{\infty} \frac{\pi / 4}{\sqrt{x}} d x$ diverge and $\frac{\frac{\pi}{4}}{\sqrt{x}} \leq \frac{\tan ^{-1} x}{\sqrt{x}}$ for all $x \geqslant 1, \quad \int_{1}^{\infty} \frac{\tan ^{-1} x}{\sqrt{x}} d x$ dinge by the comparison theorem.

