February 12 Math 3260 sec. 51 Spring 2020

Section 2.1: Matrix Operations

We defined scalar multiplication and matrix addition. If A and B are m × n and c is as scalar.

$$c[a_{ij}] = [ca_{ij}], \text{ and } [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

We defined matrix multiplication: If A is m × n and B is n × p, then AB is defined and the product is m × p.

$$AB = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_{\rho}] = \left[\sum_{k=1}^n a_{ik}b_{kj}\right]$$

February 12, 2020

Matrix Multiplication & Graphics

February 12, 2020 2/43

イロト イヨト イヨト イヨト

February 12, 2020 3/43

э

イロト イヨト イヨト イヨト

A Slide from Class on February 3; Rotation in \mathbb{R}^2

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ .

Using some basic trigonometry, the points on the unit circle

$$T(\mathbf{e}_1) = (\cos\phi, \sin\phi)$$

$$T(\mathbf{e}_2) = (\cos(90^\circ + \phi), \sin(90^\circ + \phi))$$

$$= (-\sin\phi, \cos\phi)$$

So
$$A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$
.

February 12, 2020 4/43

Theorem: Properties

The $m \times n$ **zero matrix** has a zero in each entry. We'll denote this matrix as O (or $O_{m,n}$ if the size is not clear from the context).

Theorem: Let *A*, *B*, and *C* be matrices of the same size and *r* and *s* be scalars. Then

(i)
$$A + B = B + A$$
(iv) $r(A + B) = rA + rB$

(ii) $(A + B) + C = A + (B + C)$
(v) $(r + s)A = rA + sA$

(iii) $A + O = A$
(vi) $r(sA) = (rs)A$

February 12, 2020 5/43

Theorem: Properties-Matrix Product

Let *A* be an $m \times n$ matrix. Let *r* be a scalar and *B* and *C* be matrices for which the indicated sums and products are defined. Then

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

February 12, 2020

6/43

(i)
$$A(BC) = (AB)C$$

(ii)
$$A(B+C) = AB + AC$$

(iii)
$$(B+C)A = BA + CA$$

(iv) r(AB) = (rA)B = A(rB), and

(v)
$$I_m A = A = A I_n$$

Caveats!

(1) Matrix multiplication **does not** commute! In general $AB \neq BA$. For example, we found $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 6 \end{bmatrix}$ whereas $\begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ -1 & 4 \end{bmatrix}$

(2) The zero product property **does not** hold! That is, if AB = O, one **cannot** conclude that one of the matrices *A* or *B* is a zero matrix.

(3) There is no *cancelation law*. That is, AB = CB **does not** imply that *A* and *C* are equal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

February 12, 2020

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Compute the products AB, CB, and BB.

The products

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \text{ and}$$
$$CB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}.$$
By whereas $A \neq C$. And

So AB = CB whereas $A \neq C$. And

$$BB = \left[\begin{array}{cc} 0 & 0 \\ 3 & 0 \end{array} \right] \left[\begin{array}{cc} 0 & 0 \\ 3 & 0 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right].$$

Even though *B* is not the zero matrix, the product *BB* is the zero matrix.

Positive Integer Powers: If *A* is square—meaning *A* is an $n \times n$ matrix for some $n \ge 2$, then the product *AA* is defined. For positive integer *k*, we'll define

$$A^k = AA^{k-1}.$$

Zero Power: We define $A^0 = I_n$, where I_n is the $n \times n$ identity matrix.

February 12, 2020

Transpose

Definition: Let $A = [a_{ij}]$ be an $m \times n$ matrix. The **transpose** of A is the $n \times m$ matrix denoted and defined by

$$A^T = [a_{ji}].$$

For example, if

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
, then $A^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$.

February 12, 2020

Example

1

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix}$$

Compute A^T , B^T , the transpose of the product $(AB)^T$, and the product $B^T A^T$.

$$A^{T} = \begin{pmatrix} 5 & -1 \\ 5 & 4 \end{pmatrix} \qquad B^{T} = \begin{pmatrix} 2 & -1 \\ 0 & 1 \\ 3 & 4 \end{pmatrix}$$
$$AB = \begin{pmatrix} 5 & 5 \\ -1 & 4 \end{pmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 5 & 35 \\ -6 & 4 & 73 \end{bmatrix}$$
$$2x2 & 2x3$$

February 12, 2020 11/43

э

イロト イヨト イヨト イヨト

 $(AB)^{T} = \begin{bmatrix} 5 & -6 \\ 5 & 4 \\ 35 & 13 \end{bmatrix}$

イロン イボン イヨン 一日

Theorem: Properties-Matrix Transposition

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then

 $B^{T} \qquad with more than 2$ $<math display="block">I + w or her with (ABCD)^{T} = D^{T}C^{T}B^{T}A^{T}$ (i) $(A^{T})^{T} = A$ (ii) $(A+B)^{T} = A^{T} + B^{T}$ (iii) $(rA)^T = rA^T$ (iv) $(AB)^T = B^T A^T$

February 12, 2020