February 12 Math 3260 sec. 55 Spring 2020

Section 2.1: Matrix Operations

- We defined scalar multiplication and matrix addition. If A and B are $m \times n$ and c is as scalar.

$$
c\left[a_{i j}\right]=\left[c a_{i j}\right], \quad \text { and } \quad\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right]
$$

- We defined matrix multiplication: If A is $m \times n$ and B is $n \times p$, then $A B$ is defined and the product is $m \times p$.

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]=\left[\begin{array}{l}
\sum_{k=1}^{n} a_{i k} b_{k j}
\end{array}\right]
$$

Matrix Multiplication \& Graphics

Moving Yoda

- We can move Yoda using matrix multiplication.
- Store information about the vertices in a 53756×3 matrix V, where row i of V contains the x, y, and z coordinates of the ith vertex.
- Yoda can be rotated by θ radians about the y-axis by multiplying V with R, where

$$
R=\left(\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right)
$$

A Slide from Class on February 3; Rotation in \mathbb{R}^{2}

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the rotation transformation that rotates each point in \mathbb{R}^{2} counter clockwise about the origin through an angle ϕ.

Using some basic trigonometry, the points on the unit circle

$$
\begin{aligned}
T\left(\mathbf{e}_{1}\right) & =(\cos \phi, \sin \phi) \\
T\left(\mathbf{e}_{2}\right) & =\left(\cos \left(90^{\circ}+\phi\right), \sin \left(90^{\circ}+\phi\right)\right) \\
& =(-\sin \phi, \cos \phi) \\
\text { So } A & =\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] .
\end{aligned}
$$

Theorem: Properties

The $m \times n$ zero matrix has a zero in each entry. We'll denote this matrix as O (or $O_{m, n}$ if the size is not clear from the context).

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then
(i) $A+B=B+A$
(iv) $r(A+B)=r A+r B$
(ii) $(A+B)+C=A+(B+C)$
(v) $(r+s) A=r A+s A$
(iii) $A+O=A$
(vi) $r(s A)=(r s) A$

Theorem: Properties-Matrix Product

Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then
(i) $A(B C)=(A B) C$
(ii) $A(B+C)=A B+A C$
(iii) $(B+C) A=B A+C A$
(iv) $r(A B)=(r A) B=A(r B)$, and
(v) $I_{m} A=A=A I_{n}$

Caveats!

(1) Matrix multiplication does not commute! In general $A B \neq B A$.

For example, we found $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}2 & 5 \\ -3 & 6\end{array}\right]$ whereas
$\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}4 & 11 \\ -1 & 4\end{array}\right]$
(2) The zero product property does not hold! That is, if $A B=O$, one cannot conclude that one of the matrices A or B is a zero matrix.
(3) There is no cancelation law. That is, $A B=C B$ does not imply that A and C are equal.

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Compute the products $A B, C B$, and $B B$.
The products

$$
\begin{gathered}
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right], \quad \text { and } \\
C B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

So $A B=C B$ whereas $A \neq C$. And

$$
B B=\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Even though B is not the zero matrix, the product $B B$ is the zero matrix.

Matrix Powers

Positive Integer Powers: If A is square-meaning A is an $n \times n$ matrix for some $n \geq 2$, then the product $A A$ is defined. For positive integer k, we'll define

$$
A^{k}=A A^{k-1}
$$

Zero Power: We define $A^{0}=I_{n}$, where I_{n} is the $n \times n$ identity matrix.

Transpose

Definition: Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The transpose of A is the $n \times m$ matrix denoted and defined by

$$
A^{T}=\left[a_{j j}\right] .
$$

For example, if

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \text { then } A^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right] .
$$

Example

$$
A=\left[\begin{array}{cc}
5 & 5 \\
-1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 0 & 3 \\
-1 & 1 & 4
\end{array}\right]
$$

Compute A^{T}, B^{T}, the transpose of the product $(A B)^{T}$, and the product $B^{T} A^{T}$.

$$
\begin{aligned}
& A^{\top}=\left[\begin{array}{rr}
5 & -1 \\
5 & 4
\end{array}\right] \quad B^{\top}=\left[\begin{array}{cc}
2 & -1 \\
0 & 1 \\
3 & 4
\end{array}\right] \\
& \underset{\substack{2 \times 2 \\
\text { match } \\
\text { mat }}}{A B}=\left[\begin{array}{rr}
5 & 5 \\
-1 & 4
\end{array}\right]\left[\begin{array}{rrr}
2 & 0 & 3 \\
-1 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
5 & 5 & 35 \\
-6 & 4 & 13
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (A B)^{\top}=\left[\begin{array}{cc}
5 & -6 \\
5 & 4 \\
35 & 13
\end{array}\right] \\
& B_{\substack{\text { match } \\
3 \times 2}}^{B^{\top} A^{\top}}=\left[\begin{array}{cc}
2 & -1 \\
0 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & -1 \\
5 & 4
\end{array}\right]=\left[\begin{array}{cc}
5 & -6 \\
5 & 4 \\
35 & 13
\end{array}\right]
\end{aligned}
$$

Theorem: Properties-Matrix Transposition

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(A+B)^{T}=A^{T}+B^{T}$
(iii) $(r A)^{T}=r A^{T}$

(iv) $(A B)^{T}=B^{T} A^{T}$

