### February 12 Math 3260 sec. 55 Spring 2020

#### **Section 2.1: Matrix Operations**

We defined scalar multiplication and matrix addition. If A and B are  $m \times n$  and c is as scalar.

$$c[a_{ij}] = [ca_{ij}], \text{ and } [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

▶ We defined matrix multiplication: If A is  $m \times n$  and B is  $n \times p$ , then AB is defined and the product is  $m \times p$ .

$$AB = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_p] = \left[\sum_{k=1}^n a_{ik} b_{kj}\right]$$

# Matrix Multiplication & Graphics





# A Slide from Class on February 3; Rotation in $\mathbb{R}^2$

Let  $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  be the rotation transformation that rotates each point in  $\mathbb{R}^2$  counter clockwise about the origin through an angle  $\phi$ .



Using some basic trigonometry, the points on the unit circle

$$T(\mathbf{e}_1) = (\cos \phi, \sin \phi)$$

$$T(\mathbf{e}_2) = (\cos(90^\circ + \phi), \sin(90^\circ + \phi))$$

$$= (-\sin \phi, \cos \phi)$$

So 
$$A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$
.

4/43

### Theorem: Properties

The  $m \times n$  **zero matrix** has a zero in each entry. We'll denote this matrix as O (or  $O_{m,n}$  if the size is not clear from the context).

**Theorem:** Let A, B, and C be matrices of the same size and r and s be scalars. Then

(i) 
$$A + B = B + A$$

(iv) 
$$r(A+B) = rA + rB$$

(ii) 
$$(A + B) + C = A + (B + C)$$

$$(\mathsf{v})\;(r+s)\mathsf{A}=r\mathsf{A}+s\mathsf{A}$$

(iii) 
$$A + O = A$$

(vi) 
$$r(sA) = (rs)A$$

# Theorem: Properties-Matrix Product

Let A be an  $m \times n$  matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then

(i) 
$$A(BC) = (AB)C$$

(ii) 
$$A(B+C) = AB + AC$$

(iii) 
$$(B+C)A = BA + CA$$

(iv) 
$$r(AB) = (rA)B = A(rB)$$
, and

(v) 
$$I_m A = A = A I_n$$



#### Caveats!

(1) Matrix multiplication **does not** commute! In general  $AB \neq BA$ .

For example, we found 
$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 6 \end{bmatrix}$$
 whereas  $\begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ -1 & 4 \end{bmatrix}$ 

(2) The zero product property **does not** hold! That is, if AB = O, one **cannot** conclude that one of the matrices A or B is a zero matrix.

(3) There is no *cancelation law*. That is, AB = CB does not imply that A and C are equal.

7/43

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Compute the products AB, CB, and BB.

#### The products

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \text{ and}$$

$$CB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}.$$

So AB = CB whereas  $A \neq C$ . And

$$BB = \left[ \begin{array}{cc} 0 & 0 \\ 3 & 0 \end{array} \right] \left[ \begin{array}{cc} 0 & 0 \\ 3 & 0 \end{array} \right] = \left[ \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right].$$

Even though *B* is not the zero matrix, the product *BB* is the zero matrix.



#### **Matrix Powers**

**Positive Integer Powers:** If *A* is square—meaning *A* is an  $n \times n$  matrix for some  $n \ge 2$ , then the product *AA* is defined. For positive integer k, we'll define

$$A^k = AA^{k-1}$$
.

**Zero Power:** We define  $A^0 = I_n$ , where  $I_n$  is the  $n \times n$  identity matrix.

### Transpose

**Definition:** Let  $A = [a_{ij}]$  be an  $m \times n$  matrix. The **transpose** of A is the  $n \times m$  matrix denoted and defined by

$$A^T = [a_{ji}].$$

For example, if

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
, then  $A^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$ .

### Example

$$A = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix}$$

Compute  $A^T$ ,  $B^T$ , the transpose of the product  $(AB)^T$ , and the product  $B^TA^T$ 

$$A^{T} = \begin{bmatrix} 5 & -1 \\ 5 & 4 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 3 & 4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 5 & 5 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 5 & 35 \\ -6 & 4 & 13 \end{bmatrix}$$
match

February 12, 2020 11/43

$$(AB)^{T} = \begin{bmatrix} 5 & -6 \\ 5 & 4 \\ 35 & 13 \end{bmatrix}$$

$$B^{T}A^{T} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 5 & -6 \\ 5 & 4 \\ 35 & 13 \end{bmatrix}$$

and the second secon

# Theorem: Properties-Matrix Transposition

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then

(i) 
$$(A^T)^T = A$$

(ii) 
$$(A + B)^T = A^T + B^T$$

(iii) 
$$(rA)^T = rA^T$$

(iv)  $(AB)^T = B^T A^T$ 

$$(A+B)^{T} = A^{T} + B^{T}$$

$$(rA)^{T} = rA^{T}$$

$$(AB)^{T} - B^{T}A^{T}$$

$$(AB)^{T} - B^{T}A^{T}$$