February 13 MATH 1112 sec. 54 Spring 2019

Section 5.5: Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any $a>0$ with $a \neq 1$, and for any real numbers x and y

$$
a^{x}=a^{y} \quad \text { if and only if } x=y .
$$

Logarithm Equality For and $a>0$ with $a \neq 1$, and for any positive numbers x and y

$$
\log _{a} x=\log _{a} y \text { if and only if } x=y .
$$

Inverse Function For any $a>0$ with $a \neq 1$

$$
\begin{gathered}
a^{\log _{a} x}=x \quad \text { for every } \quad x>0 \\
\log _{a}\left(a^{x}\right)=x \quad \text { for every real } x .
\end{gathered}
$$

Example

Find an exact solution ${ }^{1}$ to the equation
$2^{x+1}=5^{x}$

We solved this equation last time and found that

$$
x=\frac{\ln 2}{\ln 5-\ln 2 .}
$$

We used the natural log to do this, but the claim was made that any other base log could have been used.

[^0]An Observation
To solve $2^{x+1}=5^{x}$, we used the natural log. But we have choices. Use the change of base formula to show that our solution

$$
\begin{aligned}
& \text { base }^{\text {as }}>\frac{\ln 2}{\ln 5-\ln 2}=\frac{\log 2 \quad \operatorname{tbase}_{10}^{\log 5-\log 2}}{1} \\
& \ln 2=\frac{\log 2}{\log e} \\
& \begin{array}{l}
\ln 2=\frac{\log }{\log e} \quad \frac{\ln 2}{\ln 5-\ln 2}=\frac{\log 2 \log e}{\log 5} \log e
\end{array} \\
& =\frac{\frac{1}{\log e} \log 2}{\frac{1}{\log e}(\log 5-\log 2)}=\frac{\log 2}{\log 5-\log 2} \\
& \text { Change of base } \\
& \log _{a}(m)=\frac{\log _{b}(m)}{\log _{b}(a)}
\end{aligned}
$$

Question

Jack and Diane are solving $3^{-x}=4^{x-1}$. They arrive at the solutions

$$
\text { Jack's } \frac{\ln 4}{\ln 4+\ln 3}=\frac{\log _{3}(4)}{\log _{3}(4)+\log _{3}(3)} \text { Diane's } \frac{\log _{3}(4)}{\log _{3}(4)+1} \text {. }
$$

Which of the following statements is true?
(a) Jack's answer is correct, and Diane's is incorrect.
(b) Diane's answer is correct, and Jack's is incorrect.
(c) Both answers are correct; they are the same number.
(d) Both answers are incorrect.

Log Equations \& Verifying Answers
Double checking answers is always recommended. When dealing with functions whose domains are restricted, answer verification is critical.

Use properties of logarithms to solve the equation $\log (x-1)+\log (x-2)=\log 12$
we wart to use $\log X=\log Y \Rightarrow X=Y$
use $\log (M N)=\log M+\log N$

$$
\begin{aligned}
\log (x-1)+\log (x-2) & =\log 12 \\
\log ((x-1)(x-2)) & =\log 12 \\
(x-1)(x-2) & =12
\end{aligned}
$$

quadratic eqn.

$$
\begin{aligned}
& x^{2}-3 x+2=12 \\
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0 \quad \Rightarrow \quad \begin{aligned}
x-5 & =0 \quad \text { or } \quad \\
& x+2=0 \\
x=5 & \text { or }
\end{aligned} x=-2
\end{aligned}
$$

The quadratic equation has solutions S and -2 . we have to check if those solve the onsinal equation

$$
\log (x-1)+\log (x-2)=\log 12
$$

Check $x=5 \quad \log (5-1)+\log (5-2)$

$$
\log (4)+\log (3)=\log (3 \cdot 4)=\log (12)
$$

February 11, 2019

Yes S is a solution

Check $\quad x=-2 \quad \log (-2-1)+\log (-2-2) \quad$ undefined
-2 is not a solution.
The only solution is $x=5$.

[^0]: ${ }^{1}$ An exact solution may be a number such as $\sqrt{2}$ or $\ln (7)$ which requires a calculator to approximate as a decimal.

