Feb. 13 Math 2254H sec 015H Spring 2015

Section 7.8: Improper Integrals

Determine the convergence or divergence of the integral

$$\int_0^\infty \frac{e^{-x}}{\sqrt{x}} dx = \int_0^1 \frac{e^{-x}}{\sqrt{x}} dx + \int_0^\infty \frac{e^{-x}}{\sqrt{x}} dx$$

1/36

So
$$0 < \int_{0}^{\infty} \frac{e^{x}}{fx} dx \le \int_{0}^{\infty} \frac{1}{fx} dx = 2$$

This integral $\int_{0}^{\infty} \frac{e^{x}}{fx} dx$ is convergent.

For $\int_{0}^{\infty} \frac{e^{x}}{fx} dx$ $0 \le \frac{1}{fx} \le 1$ for all $x \ge 1$

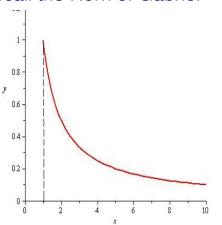
So $0 \le \frac{e^{x}}{fx} \le e^{x}$ for all $x \ge 1$

As $\int_{0}^{\infty} e^{x} dx$ converges, $\int_{0}^{\infty} \frac{e^{x}}{fx} dx$ converges.

()

As both preces converge, the original integral converges.

Recall the Horn of Gabriel



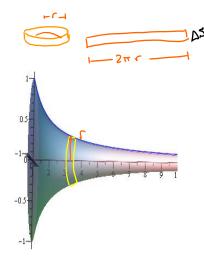


Figure: Consider the region under the curve $f(x) = \frac{1}{x}$ for $1 \le x < \infty$. Let this be rotated about the *x*-axis. We found it has finite volume $V = \pi$.

Show that the Horn of Gabriel has infinite surface area

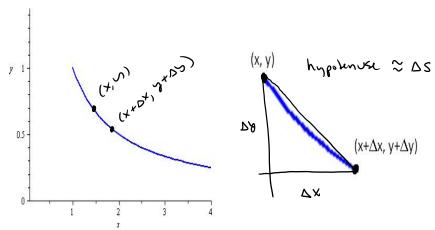


Figure: We need to characterize the length Δs of a piece of arclength for the curve.

5/36

$$\Delta S^2 \approx \Delta x^2 + \Delta y^2 = \Delta x^2 \left(1 + \left(\frac{\Delta y}{\Delta x} \right)^2 \right)$$

$$\Delta S \approx \sqrt{1 + \left(\frac{\Delta y}{\Delta x} \right)^2} \Delta x$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

Differential are length parameter
$$ds = \sqrt{1 + \left(\frac{dy}{dy}\right)^2} dx$$

6/36