February 13 Math 2306 sec. 53 Spring 2019

Section 6: Linear Equations Theory and Terminology

Recall that an *n*th order linear IVP consists of an equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

to solve subject to conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

The problem is called **homogeneous** if $g(x) \equiv 0$. Otherwise it is called **nonhomogeneous**.

Theorem: Existence & Uniqueness

Theorem: If a_0, \ldots, a_n and g are continuous on an interval I, $a_n(x) \neq 0$ for each x in I, and x_0 is any point in I, then for any choice of constants y_0, \ldots, y_{n-1} , the IVP has a unique solution y(x) on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Homogeneous Equations

We'll consider the equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

and assume that each a_i is continuous and a_n is never zero on the interval of interest.

Theorem: If y_1, y_2, \ldots, y_k are all solutions of this homogeneous equation on an interval *I*, then the *linear combination*

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x)$$

イロト 不得 トイヨト イヨト ヨー ろくの February 13, 2019

3/33

is also a solution on I for any choice of constants c_1, \ldots, c_k .

This is called the **principle of superposition**.

Corollaries

- (i) If y_1 solves the homogeneous equation, the any constant multiple $y = cy_1$ is also a solution.
- (ii) The solution y = 0 (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any **nontrivial** solution(s), and
- since y₁ and cy₁ aren't truly different solutions, what criteria will be used to call solutions distinct?

Definition: A set of functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are said to be **linearly dependent** on an interval *I* if there exists a set of constants $c_1, c_2, ..., c_n$ with at least one of them being nonzero such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
 for all x in I.

A set of functions that is not linearly dependent on *I* is said to be **linearly independent** on *I*.

Example: A linearly Dependent Set

The functions $f_1(x) = x^2$, $f_2(x) = 4x$, and $f_3(x) = x - x^2$ are linearly dependent on $I = (-\infty, \infty)$. be have to show that there are numbers C, C, C, (not all zero) such that c, f, ix + c2 f, w + c2 f2 (x) = 0 for all x in I Consider $C_1 = 1$, $C_2 = \frac{-1}{4}$ and $C_3 = 1$. $C_1 f_1(x) + (2f_2(x) + C_3f_3(x)) =$ $1 \cdot x^{2} + (-\frac{1}{4})(4x) + 1(x - x^{2}) =$

ヘロト 不通 とうき とうとう ほう

$$x^{2} - x + x - x^{2} = 0$$

Atleast one of C., Cz, Cz was nonzero (allwere nonzero).

Note
$$C_1f_1(x) + C_2f_2(x) + C_3f_3(x) = 0$$

 $C_1 X^2 + C_2(4x) + C_3(x - x^2) = 0$
It's clear that any set where $C_1 = C_3$ and $C_2 = \frac{1}{4}C_3$
would worke.

February 13, 2019 7 / 33

<ロ> <四> <四> <四> <四> <四</p>

Example: A linearly Independent Set

The functions $f_1(x) = \sin x$ and $f_2(x) = \cos x$ are linearly independent on $I = (-\infty, \infty)$. We can show that Cifixi + Cifixi = 0 for all x is only possible if Ci=Cz=0. $c_1 f_1(x) + c_2 f_2(x) = 0$ for all x Suppose $C_1 Sin X + C_2 Cos X = 0$ Then This must hold when X=0. When X=0, the equation is $C_{1} S_{1,n}(0) + C_{1} C_{0,n}(0) = 0$ $C_2 = 0$ $C_{1}(\delta) + C_{2}(1) = \delta_{0} + \delta_{0}$ February 13, 2019 8/33

The equation must hold when
$$x = T/2$$
. When $x = T/2$,
the equation is
 $C_1 Sin(T=) + O \cdot Cos(T=) = O$
 $C_1(1) = O = C_1 = O$
Both $C_1 = O$ and $C_2 = O$. The functions
are linearly independent.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ ○ ○

Definition of Wronskian

Let $f_1, f_2, ..., f_n$ posses at least n - 1 continuous derivatives on an interval *I*. The **Wronskian** of this set of functions is the determinant

$$W(f_1, f_2, \dots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

.

February 13, 2019

10/33

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If *A* is a 2 × 2 matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then its determinant $det(A) = ad - bc$.

If A is a 3 × 3 matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, then its determinant
$$det(A) = a_{11}det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12}det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13}det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

February 13, 2019 11 / 33

◆□> ◆圖> ◆理> ◆理> 三連

Determine the Wronskian of the Functions

$$J_{1}(x) = \sin x, \quad J_{2}(x) = \cos x$$

$$\partial \text{ functions} \implies 2 \times 2 \quad \text{matrix}$$

$$W(f_{1}, f_{2})(x) = \begin{vmatrix} f_{1} & f_{2} \\ f_{1}' & f_{2}' \end{vmatrix} = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}$$

f(x) along f(x) as

=
$$-Sin^2x - Cos^2x$$

February 13, 2019 12 / 33

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

 $= -\left(\operatorname{Sin}^{2} \times + \operatorname{Cos}^{2} \times\right)$

$W(f_{1}, f_{2})(x) = -1$

< □ ト < 部 ト < 差 ト < 差 ト 差 の Q ペ February 13, 2019 13 / 33

Determine the Wronskian of the Functions

$$f_{1}(x) = x^{2}, \quad f_{2}(x) = 4x, \quad f_{3}(x) = x - x^{2}$$
3 functions => 3x³ matrix

$$W(f_{1}, f_{2}, f_{3})(x) = \begin{vmatrix} f_{1} & f_{2} & f_{3} \\ f_{1}' & f_{2}' & f_{3}' \\ f_{1}'' & f_{2}'' & f_{3}'' \\ f_{1}'' & f_{2}''' & f_{3}'' \end{vmatrix} = \begin{vmatrix} x^{2} & 4x & x - x^{2} \\ 2x & 4 & 1 - 2x \end{vmatrix}$$

$$= \frac{2}{x^{2}} \begin{vmatrix} 4 & 1-2x \\ 0 & -2 \end{vmatrix} - \frac{4x}{2} \begin{vmatrix} 2x & 1-2x \\ 2 & -2 \end{vmatrix} + (x-x^{2}) \begin{vmatrix} 2x & 4 \\ -x^{2} \end{vmatrix}$$

$$= \chi^{2} \left(\Psi(-2) - O(1-2\chi) \right) - \Psi_{\chi} \left(2\chi(-2) - 2(1-2\chi) \right) + (\chi - \chi^{2}) \left(2\chi \cdot 0 - 2(4) \right)$$

$$= \chi^{2}(-8) - 4\chi(-4\chi - 2 + 4\chi) + (\chi - \chi^{2})(-8)$$

$$= -8x^{2} + 8x - 8x + 8x^{2} = 0$$

 $W(f_{1}, f_{2}, f_{3})(x) = 0$

February 13, 2019 15 / 33

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Theorem (a test for linear independence)

Let f_1, f_2, \ldots, f_n be n-1 times continuously differentiable on an interval *I*. If there exists x_0 in *I* such that $W(f_1, f_2, \ldots, f_n)(x_0) \neq 0$, then the functions are **linearly independent** on *I*.

If $y_1, y_2, ..., y_n$ are *n* solutions of the linear homogeneous n^{th} order equation on an interval *I*, then the solutions are **linearly independent** on *I* if and only if $W(y_1, y_2, ..., y_n)(x) \neq 0$ for¹ each *x* in *I*.

¹For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

Determine if the functions are linearly dependent or independent:

$$y_{1} = x^{2}, \quad y_{2} = x^{3} \quad I = (0, \infty)$$

we ill use the Uronskien.

$$W(y_{1}, y_{2})(x) = \begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix} = \begin{vmatrix} x^{2} & x^{3} \\ zx & 3x^{2} \end{vmatrix}$$

$$= x^{2}(3x^{2}) - 2x(x^{3}) = 3x^{4} - 2x^{4} = x^{4}$$

 $W(y_1, y_2)(x) = x^{Y}$

lineerly independent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fundamental Solution Set

We're still considering this equation

$$a_n(x)rac{d^n y}{dx^n} + a_{n-1}(x)rac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)rac{dy}{dx} + a_0(x)y = 0$$

with the assumptions $a_n(x) \neq 0$ and $a_i(x)$ are continuous on *I*.

Definition: A set of functions $y_1, y_2, ..., y_n$ is a **fundamental solution set** of the n^{th} order homogeneous equation provided they

February 13, 2019

20/33

- (i) are solutions of the equation,
- (ii) there are *n* of them, and
- (iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.